

TMSCA MIDDLE SCHOOL MATHEMATICS

TEST #13 © FEBRUARY 25,2023

GENERAL DIRECTIONS

- 1. About this test:
 - A. You will be given 40 minutes to take this test.
 - B. There are 50 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading on Scantrons and Chatsworth cards.
- 3. If you are using a Chatsworth or Scantron card, please follow the specific instructions given at your particular meet.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators **MAY NOT** be used on this test.
- 8. All problems answered correctly are worth **FIVE** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. 1,487 + 1,385 + 1,726 = _____
- A. 4,528
- B. 4,628
- C. 4,618
- D. 4,588
- E. 4,598

- 2. 376 (88 + 123) = _____
- A. 115
- B. 175
- C. 165
- D. 125
- E. 145

- 3. 4.5 × 1.12 = _____
- A. 5.44 B. 5.34
- C. 5.24
- D. 5.14
- E. 5.04

- $4.988 \div 16 =$ (nearest tenth)
- A. 60.9
- B. 61.8
- C. 61.4
- D. 61.2
- E. 60.7

- 5. What is the unit rate of purchasing 12 concert tickets for \$1,350.00?
- A. \$116.25
- B. \$116.50
- C. \$112.50
- D. \$114.75
- E. \$114.50

- 6. 27 minutes is what percent of an hour?
- A. 45%
- B. 35%
- C. 55%
- D. 40%
- E. 38%
- 7. 1/4 of a circle is cut away leaving the portion shown. What is the perimeter of the remaining portion? Let $\pi = 3$.

- A. 18 inches
- B. 27 inches
- C. 26 inches
- D. 35 inches
- E. 36 inches

- 8. 983,466 ÷ 9 has a remainder of _____
- A. 4

- B. 3
- C. 2

D. 1

E. 0

- 9. 17,000,000 decigrams = _____ kilograms
- A. 17,000
- B. 170
- C. 1,700
- D. 17
- E. 170,000
- 10. How many total diagonals can be drawn from one vertex of a regular 18-sided polygon?
- A. 135
- B. 128
- C. 16
- D. 15
- E. 72

- 11. What is the next term of the sequence?
- 82, 41, 20.5, 10.25, ...

- A. 5.5
- B. 5.125
- C. 5.75
- D. 5.375
- E. 5.625

- 12. What is the largest palindrome less than the sum of 745 and 933?
- A. 1,771
- B. 1,678
- C. 1,881
- D. 1,661
- E. 1,001

- 13. What value is 37 more than the GCF of the numbers 56 and 48?
- A. 43
- B. 47
- C. 39
- D. 41
- E. 45

- 14. 10 yards = _____ inches
- A. 360
- B. 30
- C. 720
- D. 180
- E. 900

15.
$$\frac{12}{13} - \frac{2}{3} =$$
A. 1
B. $\frac{10}{39}$

- D. $\frac{9}{13}$
- E. $\frac{4}{13}$

16. How many more sides does a nonagon have than a heptagon?

A. 0

B. 1

D. 3

E. 4

17. What value of n can make the relation $\{(4,5), (n,-2), (-6,9), (-1,0), (7,10)\}$ a function?

A. -1

18. Solve: $-\frac{3}{2}w > -6$ A w < 9 B. w < -9

- C. w > 4
- D. w < 4
- E. w < -4

19. What is the positive difference of the mean and median of the set of numbers {29, 31, 45, 50, 20}?

- A. 11
- B. 7

C. 2

D. 4

E. 10

20. If the letters of the word *FUNCTION* are placed in a bag, what is the probability of drawing out an N on the first draw, and then with replacement, drawing out a vowel or F?

A. $\frac{2}{3}$

B. 1/8

C. 3/4

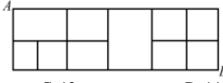
D. $\frac{3}{8}$

E. 1/4

21. A perfect number is a composite number that is equal to the sum of all its divisors, excluding itself. 28 is a perfect number because its factors, other than itself, are 1, 2, 4, 7, and 14, and 1 + 2 + 4 + 7 + 14 = 28. What is the smallest perfect number less than 28?

A. 8

B. 4


C. 6

- D. 10
- E. 12

22. 7,854 = _____ (Roman numeral)

- A. PDCCCIV
- B. PMMDCCCIV
- C. $\overline{V}MMDCCCLIV$
- D. PMMDCCCIV
- E. VMMDCLIX

23. Moving only to the right and/or down, how many paths exist from point A to point B?

- A. 11
- B. 12
- C. 13

- D. 14
- E. 16

24. What is the product of the third and fifth triangular numbers?

- A. 90
- B. 150

- D. 18
- E. 126

25. What is the surface area of a cube with an inner diagonal of 6 cm?

- $A.72 \text{ cm}^2$
- $B. 36 cm^2$
- C. 108 cm²
- D. 144 cm²
- E. 216 cm²

26. 218₉ = _____ (base 4) A. 2311

- B. 2303
- C. 2233
- D. 2223
- E. 2323

27. If five lizards are equal to eight snakes, and twelve snakes are equal to seventeen turtles, how many lizards are equal to sixty-eight turtles?

- A. 18
- B. 30
- C. 48

- D. 42
- E. 36

Copyright © 2022 by TMSCA

28. Which is closest to $\sqrt{20}$?

- A. 4.4
- B. 4.6
- C. 4.2
- D. 4.3
- E. 4.5

29. What is the remainder when 673,122,003 is divided by 7?

A. 4

D. 1

E. 0

30. 116 is what term of the arithmetic sequence 18, 25, 32, 39, ...?

- A. 13th
- B. 14th
- C. 15th
- D. 16th
- E. 17th

 $31.15^{\circ}C = _{---}^{\circ}F$

- A. 50
- C. 68
- D. 41
- E. 77

32. If the number 140 is increased by 50%, and if that result is then decreased by 50%, what is the final result?

- A. 110
- C. 95
- D. 105
- E. 125

33. $\frac{126\times10^8}{4.2\times10^3} =$ (scientific notation)

- A. 3×10^{5}

- C. 3×10^{-5} D. 3×10^{-6} E. 3×10^{4}

34. A line passes through the points (-4,6) and (8, y) and has a slope of $\frac{1}{6}$. What is the value of y?

- A. 10
- B. 4

- C. -4
- D. 8

35. How many permutations can be made of 15 items taken 2 at a time?

- A. 30
- B. 105
- C. 125
- E. 210

36. If $f(x) = x^3$, g(x) = 10 - 3x, and $h(x) = \sqrt{x}$, then what is the value of g(f(h(9)))?

- A. -17
- B. 7

- C_{-71}

E. -2.177

37. A bag contains a combination of 150 red and blue gummy bears. What is the number of blue gummy bears in the bag if 28% of the gummy bears are not red?

- A. 112
- B. 102
- C. 36
- D. 72
- E. 42

38. If $x^3 < 125$, what is the sum of all positive integers, x, that satisfy the inequality?

- A. 10
- B. 24
- C. 15
- D. 36
- E. 20

39. A triangle has vertices located at coordinates (-5, -2), (-1, -1), and (2, 6). What is the length of the longest side of the triangle?

- A. $2\sqrt{37}$ units

- B. $\sqrt{113}$ units C. $\sqrt{134}$ units D. $2\sqrt{34}$ units
- E. $4\sqrt{85}$

40. A sculpture is increasing in value at a rate of 20% each year. If the sculpture is worth \$200 now, how much will the sculpture be worth after two years?

- A. \$264
- B. \$272
- C. \$224
- D. \$288
- E. \$240

41. What is the area of a regular pentagon with a side length of 8 cm and an apothem of 6 cm?

- $A. 48 \text{ cm}^2$
- $B. 96 cm^2$
- C. 192 cm^2
- D. 144 cm²
- E. 120 cm^2

42.
$$\left(\frac{a^5b^7}{ab^{-3}}\right)\left(\frac{a^{-3}b^4}{a^3b^{-1}}\right)\left(\frac{a^2b^{-2}}{ab^8}\right) = \underline{\hspace{1cm}}$$

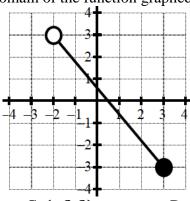
A. ab^5

B.
$$\frac{1}{a^3b^5}$$

D.
$$\frac{b^5}{a}$$

E. a^2b^5

43. What is the equation $y = -\frac{2}{3}x + \frac{5}{6}$ expressed in standard form? A. 4x + 6y = 5 B. 4x - 6y = 5 C. 4x + 6y = -5 D. 4x - 6y = -5 E. 6x - 4y = 5


A.
$$4x + 6y = 5$$

B.
$$4x - 6y = 5$$

C.
$$4x + 6y = -5$$

D.
$$4x - 6y = -5$$

44. Using interval notation, what is the domain of the function graphed below?

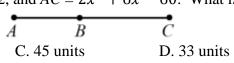
A. (-2, 3]

B.
$$[-2, 3)$$

$$C.(-2,3)$$

D.
$$[-3, 3]$$

45. What is the surface area of the sphere with the equation $(x + 6)^2 + (y - 8)^2 + (z + 11)^2 - 61 = 263$, with $\pi = 3$?


A. 972 units²

B. 1,944 units²

C. 3,888 units²

D. 23,328 units² E. 5,832 units²

46. In \overline{AC} below, $AB = x^2 - 2$, BC = 5x - 2, and $AC = 2x^2 + 6x - 60$. What is the measure of \overline{AB} ?

A. 38 units

B. 47 units

E. 12 units

47. The solution to the system of equation $\begin{cases} x - y = -13 \\ 2x + y = -2 \end{cases}$ is (a, b), and the solution to the system of equation

 $\begin{cases} 5x - 4y = 2 \\ 3x + 2y = 32 \end{cases}$ is (c, d), then what is the value of ac + bd?

A. 14

B. 26

C. 34

D. 22

E. 18

48. Frozen Freddy's Ice Cream Stand offers two different-sized ice-cream cones. The smaller cones are 4 inches tall with a diameter of 3 inches, and the larger cone is 6 inches tall with a diameter of 4 inches. If $\pi = 3$, how much larger is the volume of the larger cone than the smaller cone?

A. 18 in³

B. 21 in³

C. 15 in³

D. 9 in^3

E. 12 in³

49. What is the value of the y-intercept of the graph of the quadratic equation $y = -7(x+2)^2 - 8$?

A. -7

B. -8

C. -32

D. -36

E. -20

50. If $m + \frac{1}{m} = 18$, then what is the value of $2m^2 + \frac{2}{m^2}$? A. 324 B. 652 C. 644

D. 642

E. 648

2022 – 2023 TMSCA Middle School Mathematics Test #13 Answer Key

1. E	18. D	35. E
2. C	19. D	36. C
3. E	20. B	37. E
4. B	21. C	38. A
5. C	22. C	39. B
6. A	23. C	40. D
7. C	24. A	41. E
8. E	25. A	42. D
9. C	26. B	43. A
10. D	27. B	44. A
11. B	28. E	45. C
12. D	29. D	46. B
13. E	30. C	47. B
14. A	31. B	48. C
15. B	32. D	49. D
16. C	33. B	50. C
17. E	34. D	

- 6. 27 minutes of an hour is equal to $\frac{27}{60} = \frac{9}{20}$. Because $\frac{9}{20} = 0.45$, 27 minutes is equal to 45% of an hour.
- 11. The pattern of the sequence 82, 41, 20.5, 10.25, ... is dividing the previous term by 2. Therefore, the next term of the sequence is equal to $10.25 \div 2 = 5.125$.
- 17. A relation is a set of ordered pairs. A function is a relation in which no *x*-value repeats. So, of the answer choices given, the value of *n* to make the relation $\{(4,5), (n,-2), (-6,9), (-1,0), (7,10)\}$ a function is 3.
- 21. The smallest perfect number less than 28 is 6, because 6 = 1 + 2 + 3.
- 27. One way to find the number of lizards equal to 68 turtles is to find a common multiple of 8 and 12, as

 30L = 48S shown. A common multiple is 48. So, if there are 5 lizards for every 8 snakes, then there

 5L = 8S are 30 lizards for every 48 snakes. Also, if there are 12 snakes for every 17 turtles, then

 48S = 68T there are 48 snakes for every 68 turtles. Therefore, there are 30 lizards for every 68 snakes.
- 28. An irrational number is a non-repeating, non-terminating number, $\sqrt{20} = 4.472135955$ Of the answer choices, $4.6^2 = 21.16$, $4.4^2 = 19.36$, and $4.5^2 = 20.25$. Therefore, $\sqrt{20}$ is closest to 4.5 because 20.25 is closer to 20 than 19.36.

36.
$$h(9) = \sqrt{9} = 3$$
. $f(3) = 3^3 = 27$. $g(27) = 10 - 3(27) = -71$. Therefore, $g(f(h(9))) = -71$.

- 41. The formula for area of a regular polygon is $A = \frac{aP}{2}$, where a is the apothem and P is the perimeter of the polygon. The apothem is the distance from the center of the polygon perpendicular to a side of the polygon. A pentagon has 5 sides, so its perimeter is 5(8) = 40 cm. Substituting into the formula, the area of the regular pentagon is equal to $A = \frac{6(40)}{2} = \frac{240}{2} = 120$ cm².
- 45. The standard form equation of a sphere is $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$. To get the given equation $(x+6)^2 + (y-8)^2 + (z+11)^2 61 = 263$ into standard form, add 61 to both sides of the equation to get $(x+6)^2 + (y-8)^2 + (z+11)^2 = 324$. Since $r^2 = 324$, r = 18. The formula for finding the surface area of a sphere is $SA = 4\pi r^2$. Substituting into the formula, the surface area of the given sphere is then $SA = 4\pi r^2 = 4(3)(18)^2 = 4(3)(324) = 3,888$ units².
- 49. One way to find the y-intercept of a quadratic function is to substitute 0 in for x and solve for y. The given equation $y = -7(x+2)^2 8$ would then change to $y = -7(0+2)^2 8$. Using order of operations, $y = -7(0+2)^2 8 = -7(2)^2 8 = -7(4) 8 = -28 8 = -36$. Therefore, the y-intercept of the graph of the quadratic equation $y = -7(0+2)^2 8$ is -36.
- 50. Square both sides of the equation $m + \frac{1}{m} = 18$ to get $\left(m + \frac{1}{m}\right)^2 = 18^2 \rightarrow m^2 + 2 + \frac{1}{m^2} = 324$. Subtract 2 from both sides of the equation to get $m^2 + \frac{1}{m^2} = 322$. Multiplying both sides of the equation by 2 produces $2\left(m^2 + \frac{1}{m^2}\right) = 2(322) \rightarrow 2m^2 + \frac{2}{m^2} = 644$.