

TMSCA MIDDLE SCHOOL MATHEMATICS
TEST \#12 ©
FEBRUARY22, 2020

GENERAL DIRECTIONS

1. About this test:
A. You will be given 40 minutes to take this test.
B. There are 50 problems on this test.
2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use BLOCK CAPITAL LETTERS. Clean erasures are necessary for accurate grading on Scantrons and Chatsworth cards.
3. If you are using a Chatsworth or Scantron card, please follow the specific instructions given at your particular meet.
4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
5. You may use additional scratch paper provided by the contest director.
6. All problems have ONE and ONLY ONE correct [BEST] answer. There is a penalty for all incorrect answers.
7. Calculators MAY NOT be used on this test.
8. All problems answered correctly are worth FIVE points. TWO points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1. $5 \frac{1}{4}+6 \frac{1}{2}+\frac{7}{8}=$ \qquad
A. $11 \frac{9}{8}$
B. $12 \frac{5}{8}$
C. $12 \frac{1}{2}$
D. $12 \frac{3}{8}$
E. $12 \frac{3}{4}$
2. $15.11-47=$ \qquad
A. -31.79
B. -31.99
C. -31.69
D. -31.59
E. -31.89
3. $1.11 \times 8.01=$ \qquad (nearest hundredth)
A. 8.88
B. 8.91
C. 8.89
D. 8.90
E. 8.80
4. $196 \div 0.08=$ \qquad
A. 2,450
B. 2,750
C. 2,250
D. 2,550
E. 2,825
5. Kelsey wants to color one-fourth of the rectangle below the color purple. What is the number of square centimeters Kelsey will color?

28 cm

A. $18.5 \mathrm{~cm}^{2}$
B. $36 \mathrm{~cm}^{2}$
C. $72 \mathrm{~cm}^{2}$
D. $63 \mathrm{~cm}^{2}$
E. $54 \mathrm{~cm}^{2}$
6. What is the remainder when the number 541 is divided by 17 ?
A. 14
B. 9
C. 8
D. 16
E. 11
7. What is the sum of the largest two prime numbers less than 100 ?
A. 186
B. 190
C. 188
D. 192
E. 194
8. 1.72 kilometers $=$ \qquad _centimeters (scientific notation)
A. 1.72×10^{6}
B. 17.2×10^{6}
C. 1.72×10^{4}
D. 1.72×10^{5}
E. 1.72×10^{-6}
9. What is the lower-quartile for the numbers $134,183,177,156,143,171$, and 135 ?
A. 49
B. 156
C. 135
D. 134.5
E. 139
10. Point B has coordinates $(-6,17)$. If B is reflected across the y-axis, then translated to the left 14 units and down 21 units, what are the new coordinates of B ?
A. $(20,38)$
B. $(-8,-4)$
C. $(-8,38)$
D. $(20,-4)$
E. $(-6,-6)$
11. If $6,500=2^{a} \cdot 5^{b} \cdot 13^{c}$, what is the value of $\left(2^{a}\right)^{b}+\left(3^{b}\right)^{c}$?
A. 43
B. 86
C. 59
D. 91
E. 89
12. 14 miles $=$ \qquad yards
A. 24,420
B. 24,640
C. 26,180
D. 23,960
E. 73,920
13. James wants to leave an 18% tip of his total bill at lunch. If James's total bill is $\$ 16.20$, what is the amount of the tip?
A. $\$ 2.95$
B. $\$ 2.92$
C. $\$ 2.87$
D. $\$ 2.97$
E. $\$ 2.85$
14. Simplify: $\quad \frac{5}{3}(-9+15)^{2}-7$
A. 55
B. 47
C. 59
D. 51
E. 53
15. What is the next term of the sequence $1,8,27,64,125, \ldots$?
A. 216
B. 189
C. 256
D. 225
E. 343
16. What is the sum of the interior angles of a regular polygon with 13 sides?
A. $1,800^{\circ}$
B. $2,340^{\circ}$
C. $2,520^{\circ}$
D. $1,620^{\circ}$
E. $1,980^{\circ}$
17. What is the sum of the GCF of the numbers 120 and 45 and the LCM of the numbers 32 and 6 ?
A. 111
B. 96
C. 288
D. 126
E. 133
18. Which of the following are prime numbers?
I. 89
II. 101
III. 123
IV. 117
A. I only
B. II and III only
C. I and IV only
D. I and II only
E. III and IV only
19. $M X X I V \div I V=$ \qquad (Arabic number)
A. 336
B. 196
C. 216
D. 316
E. 256
20. Solve for $n, n>0: \frac{48}{n}<2$
A. $n<24$
B. $n>24$
C. $n<\frac{1}{24}$
D. $n>\frac{1}{24}$
E. $n>96$
21. $\frac{7}{16}=$ \qquad (decimal)
A. 0.44
B. $0.4 \overline{37}$
C. 0.4375
D. 0.4376
E. $0.437 \overline{5}$
22. What is the sum of the digits of the sum of $718+319$?
A. 12
B. 11
C. 13
D. 9
E. 10
23. What is the measure of an exterior angle of a regular pentagon?
A. 60°
B. 30°
C. 72°
D. 45°
E. 36°
24. How many 3 inch $\times 3$ inch square tiles can fit into a 3 feet $\times 3$ feet floor space?
A. 144
B. 72
C. 180
D. 1,296
E. 27
25. Every letter of the word POLYNOMIAL is placed inside a bag. What is the probability someone reaches inside the bag and draws out a vowel on the first draw and then, without replacement, draws a consonant on the second draw?
A. $\frac{3}{5}$
B. $\frac{3}{10}$
C. $\frac{4}{15}$
D. $\frac{2}{5}$
E. $\frac{16}{45}$
26. $253_{6} \div 50_{7}=$ \qquad
A. 6
B. 7
C. 4
D. 3
E. 5
27. If $\pi=3$, what is the lateral surface area of the cylinder?

A. 1,248 units ${ }^{2}$
B. 1,056 units ${ }^{2}$
C. 1,440 units ${ }^{2}$
D. 1,448 units 2
E. 4,224 units 2
28. Line A has a slope of $\frac{6}{19}$ and passes through the points $(14, y)$ and $(-24,4)$. What is the value of y ?
A. 8
B. 24
C. 16
D. -4
E. -8
29. Let A equal the product of 5 and 7. How many numbers less than A are relatively prime to A ?
A. 24
B. 32
C. 20
D. 10
E. 18
30. Let n represent the number of diagonals that can be drawn in a regular decagon. What is the value of $\frac{2}{5} n$?
A. 21
B. 24
C. 16
D. 14
E. 8
31. Simplify: $\quad 4(3 x-2)+2\left(x^{2}-x+5\right)+\left(-2 x^{2}\right)$
A. $8 x+2$
B. $10 x+2$
C. $4 x^{2}+8 x+2$
D. $4 x^{2}+10 x+2$
E. $4 x^{2}+12 x+2$
32. What is the equation $x y=\sqrt{\frac{m}{n p}}$ solved for p ?
A. $p=\frac{m}{(n x y)^{2}}$
B. $p=\left(\frac{n x y}{m}\right)^{2}$
C. $p=\frac{n \sqrt{x y}}{m}$
D. $p=\frac{m}{n(x y)^{2}}$
E. $p=\frac{m}{n x y^{2}}$
33. What is the value of the discriminant of the quadratic equation $-5 x+10 x^{2}+9=0$?
A. 280
B. -280
C. 261
D. 205
E. -335
34. How many different permutations can be made using the letters of the word RACECAR?
A. 90
B. 5,040
C. 420
D. 630
E. 260
35. What is the area of the rectangle below?

A. 15 units 2
B. 12.5 units 2
C. $12 \sqrt{5}$ units 2
D. $14 \sqrt{5}$ units 2
E. 16 units 2
36. What is the perimeter of the square which can be divided into two rectangles whose areas are 14 units 2 and 22 units 2 ?
A. 36 units
B. 32 units
C. 72 units
D. 18 units
E. 24 units
37. If $M=\frac{6 \sqrt{6}}{-2 \sqrt{30}}$, what is the value of $\frac{20}{4} M$, in simplified radical form?
A. $-4 \sqrt{6}$
B. $-4 \sqrt{5}$
C. $-3 \sqrt{5}$
D. $-6 \sqrt{6}$
E. $-5 \sqrt{3}$
38. A store receives a shipment of 500 lawnmowers. If the store sells 30% of the lawnmowers each year, how many lawnmowers will the store have remaining after two years?
A. 135
B. 283
C. 227
D. 217
E. 245
39. The solution to the system $\left\{\begin{array}{c}3 x+7 y=-65 \\ x=2 y+26\end{array}\right.$ is (x, y) and the solution to the system $\left\{\begin{array}{c}14 a-b=-23 \\ b=\frac{5}{2} a+\frac{23}{2}\end{array}\right.$ is (a, b). What is the value of $a b+x y$?
A. -47
B. -53
C. -19
D. -39
E. -5
40. Solve for n, in interval notation: $\quad-9 \leq \frac{4 n}{3}-1<11$
A. $[-6,9)$
B. $(-6,9]$
C. $\left[-\frac{15}{2}, \frac{15}{2}\right]$
D. $\left(-\frac{15}{2}, \frac{15}{2}\right)$
E. $[-6,9]$
41. Which linear equation below has a slope of $3 / 8$ and a y-intercept of -3 ?
A. $3 x+8 y=24$
B. $8 x-3 y=9$
C. $16 x-6 y=-18$
D. $6 x-16 y=48$
E. $3 x+8 y=-24$
42. If $5^{x}=8$, what is the value of $5^{3 x}$?
A. 24
B. 64
C. 512
D. 576
E. 128
43. What is the perimeter of $\triangle A B C$?

A. 189 inches
B. 378 inches
C. 182 inches
D. 168 inches
E. 175 inches
44. $\left(\frac{2 a^{3} c^{-1}}{3 b^{2} c^{3}}\right)^{2} \div \frac{4 a^{-2} b^{-1}}{b^{-3} c^{-2}}=$ \qquad
A. $\frac{4 a^{4}}{b^{2} c^{6}}$
B. $\frac{a^{8}}{9 b^{6} c^{10}}$
C. $\frac{4 a^{8}}{b^{6} c^{10}}$
D. $\frac{a^{6}}{18 b^{8} c^{16}}$
E. $\frac{a^{6}}{9 b^{8} c^{16}}$
45. In right $\triangle A B C, m \angle B=90^{\circ}, A B=16, A C=34$, and $B C=30$. What is the value of the trig ratio, $\tan \angle C$?
A. $\frac{8}{17}$
B. $\frac{8}{15}$
C. $\frac{15}{17}$
D. $\frac{17}{15}$
E. $\frac{15}{8}$
46. If $f(x)=\frac{x}{4-x}$ and $g(x)=3^{-x}$, what is the value of $\frac{f(8)}{g(2)}$?
A. -24
B. $-\frac{2}{9}$
C. $-\frac{1}{3}$
D. -12
E. -18
47. The Hendersons want to re-mulch their rectangular flower bed. The flower bed measure 6 feet by 15 feet. If the Hendersons buy two cubic yards of mulch, how many inches deep will the mulch be spread evenly over the flower bed?
A. $7 \frac{1}{2}$ inches
B. $7 \frac{1}{5}$ inches
C. $8 \frac{1}{4}$ inches
D. $7 \frac{3}{10}$ inches
E. $7 \frac{1}{8}$ inches
48. In the circle, $\overline{A C}$ and $\overline{E C}$ are secants meeting at point $C, A B=2, B C=8, C D=4$, and $E D=x$. Find the value of x.

A. 20
B. 18
C. 16
D. 6
E. 1
49. In 1980 , the minimum wage was $\$ 3.70$ per hour. In 2019 , in Arkansas, the minimum wage is $\$ 9.25$. what is the percent of increase of the wages?
A. 150%
B. 60%
C. 160%
D. 170%
E. 185%
50. Find the value of n, if $n!=(3!)(5!)(7!)$.
A. 15
B. 12
C. 13
D. 10
E. 14

1. B	18. D	35. A
2. E	19. E	36. E
3. C	20. B	37. C
4. A	21. C	38. E
5. D	22. B	39. B
6. A	23. C	40. A
7. A	24. A	41. D
8. D	25. C	42. C
9. C	26. D	43. D
10. B	27. B	44. B
11. D	28. C	45. B
12. B	29. A	46. E
13. B	30. D	47. B
14. E	31. B	48. C
15. A	32. D	49. A
16. E	33. E	50. D
17. A	34. D	

12. Since 1 mile $=1,760$ yards, 14 miles $=14(1,760)=24,640$ yards .
13. Given the equation $x y=\sqrt{\frac{m}{n p}}$, to solve for p, first square both sides to get $(x y)^{2}=\frac{m}{n p}$. Now, multiply both sides by p to get $p(x y)^{2}=\frac{m}{n}$. Divide both sides by $(x y)^{2}$ to get $p=\frac{m}{n(x y)^{2}}$.
14. If a square can be divided into two rectangles having areas of 14 units 2 and 22 units 2, then the total area of the square is $14+22=36$ units 2. This means the side length of the square is equal to $\sqrt{36}=6$ units. Therefore, the perimeter of the square is equal to $4(6)=24$ units.
15. This problem is an exponential decay problem. The exponential decay form is $y=a \cdot b^{x}$, where a is the initial amount and b is equal to $1-r$, which is the rate. From our problem, we get $y=500(1-0.3)^{2}$, which becomes $500(0.7)^{2}=500(0.49)=245$. After 2 years, there will be 245 lawnmowers remaining.
16. To solve $-9 \leq \frac{4 n}{3}-1<11$, first add 1 to each part of the inequality to get $-8 \leq \frac{4 n}{3}<12$. Now multiply each part of the inequality by $\frac{3}{4}$ to get $-6 \leq n<9$. This is expressed using interval notation as $[-6,9)$.
17. $5^{3 x}$ can be rewritten as $\left(5^{x}\right)^{3}$. Since $5^{x}=8$, we can substitute to get $\left(5^{x}\right)^{3}=8^{3}=512$.
18. Using the picture below, since the triangles are similar, set up the proportion $\frac{7}{24}=\frac{21}{x+24}$. Cross multiply to
 get $7(x+24)=21(24)$, which simplifies to $7 x+168=504$. Subtract 168 from both sides and get $7 x=336$. Divide both sides by 7 and get $x=48$. We now have a right triangle with legs of 21 inches and $48+24=72$ inches. Using the Pythagorean
Theorem, the hypotenuse is equal to $\sqrt{21^{2}+72^{2}}=\sqrt{5,625}=75$. The perimeter of the triangle will then be $21+75+72=168$ inches.
19. Draw the triangle as shown. The trig function tangent is equal to $\frac{\text { opposite side }}{\text { adjacent side }}$ from a reference angle.
 So, the tangent of $\angle C$ is equal to $\frac{16}{30}=\frac{8}{15}$.
20. 1 cubic yard $=27$ cubic feet, so 2 cubic yards $=54$ cubic feet. We can make the equation $54=(6)(15)(x)$, which simplifies to $54=90 x$. Divide both sides by 90 and $x=\frac{54}{90}=\frac{3}{5}$ feet. Since we are asked to find the measure in inches, multiply $\frac{3}{5}$ by 12 and get $\frac{36}{5}=7 \frac{1}{5}$. The mulch will be $7 \frac{1}{5}$ inches deep.
21. We know that $3!=3 \cdot 2 \cdot 1,5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, and $7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. We can take the factors of 2 and 4 from 5 ! to make 8 . We can take the factors of 3 and 3 from 3 ! and 5 ! to make 9 . We can take the factors of 5 and 2 from 3 ! and 5 ! to make 10 . So, we are left with $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=10$!.
