

TMSCA MIDDLE SCHOOL MATHEMATICS
 TEST \#13 ©
 FEBRUARY25, 2017

GENERAL DIRECTIONS

1. About this test:
A. You will be given 40 minutes to take this test.
B. There are 50 problems on this test.
2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use BLOCK CAPITAL LETTERS. Clean erasures are necessary for accurate grading on Scantrons and Chatsworth cards.
3. If you are using a Chatsworth or Scantron card, please follow the specific instructions given at your particular meet.
4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
5. You may use additional scratch paper provided by the contest director.
6. All problems have ONE and ONLY ONE correct [BEST] answer. There is a penalty for all incorrect answers.
7. Calculators MAY NOT be used on this test.
8. All problems answered correctly are worth FIVE points. TWO points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1. Calculate the product of 48 and 35 .
A. 83
B. 13
C. 73
D. 1680
E. 1660
2. $1 \frac{1}{3} \times 2 \frac{5}{6}=$ \qquad -.
A. $3 \frac{7}{9}$
B. $2 \frac{5}{18}$
C. $3 \frac{5}{9}$
D. $2 \frac{7}{9}$
E. $2 \frac{5}{9}$
3. $8,768 \div 4=1,073+$ \qquad
C. 1,119
D. 1,369
E. 1,319
4. Timbo has $48 \frac{3}{4}$ ounces of liquid to be used for a science project. He must divide the liquid evenly into 6 containers. How many ounces will be in each container?
A. $8 \frac{1}{8}$
B. $6 \frac{3}{8}$
C. $7 \frac{3}{8}$
D. $8 \frac{3}{8}$
E. $7 \frac{7}{8}$
5. Simplify: $\quad 3^{2}+4(6)-12 \div 3$
A. 7
B. 13
C. 21
D. 29
E. 25
6. Latoya rolls a pair of dice. What is the probability that her dice will show a sum of 7 on the top sides?
A. $\frac{1}{12}$
B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$
E. $\frac{1}{2}$
7. Using the picture below, find the sum of x and w.

A. 152
B. 175
C. 140
D. 166
E. 174
8. A driver averaged 65 mph and took $4 \frac{2}{5}$ hours to travel from Houston to Dallas. What is the distance between Houston and Dallas?
A. 266.5 miles
B. 273 miles
C. 264 miles
D. 279.5 miles
E. 286 miles
9. $56+18.98+0.052+4.2=$ \qquad
A. 79.232
B. 72.25
C. 72.232
D. 79.323
E. 78.323
10. $12 \times 1.2 \times 0.5=$ \qquad
A. 7.2
B. 72
C. 7.02
D. 0.072
E. 720
11. As a Roman numeral, what is the product of the number of vertices of an octagon and the number of vertices of a hexagon?
A. XLVIII
B. XXXXIII
C. XCVIII
D. LXVIII
E. XXXVIII
12. $101 \times 343=$ \qquad
A. 34,743
B. 343,343
C. 34,643
D. 3,463
E. 34,463
13. The sum of the first four positive multiples of 3 is \qquad .
A. 11
B. 16
C. 18
D. 30
E. 5
14. $1687-142.2=$ \qquad
A. 265
B. $1,544.82$
C. 1545.8
D. 1545.82
E. $1,544.8$
15. Keeley is buying a new pair of shoes. The price on the shoebox says $\$ 76.99$. If she gives the salesperson four twenty dollar bills, how much change will she receive?
A. $\$ 3.91$
B. $\$ 3.11$
C. $\$ 2.01$
D. $\$ 2.91$
E. $\$ 3.01$
16. Abe has a rectangular container measuring 6 inches wide, 8 inches high and 12 inches long. He needs to fill his container halfway with water to wash his mom's car. How much water will be needed for Abe's task?
A. 576 in 3
B. 26 in 3
C. $288 \mathrm{in}^{3}$
D. $13 \mathrm{in}^{3}$
E. $278 \mathrm{in}^{3}$
17. What value of x makes the equation true? $\quad-5(2 x-3)+4 x-1=2(2 x+9)$
A. -0.4
B. 0.2
C. -0.25
D. 0.75
E. 0.6
18. A football field is 100 yards long. Michael ran for one-fifth of the football field on one play and then ran for another one-fourth of a football field on a different play. In total, how many yards did Michael run for?
A. 145 yd
B. 125 yd
C. 120 yd
D. 45 yd
E. 55 yd
19. On a map, 1 inch is equal to $1 / 2$ miles. Rahim owns a tractor and is planning to mow one-tenth of his rectangular piece of land. If his land measures 3 inches by 5 inches, how many acres of land does Rahim plan to mow. (1 mile ${ }^{2}=640$ acres)
A. 180 acres
B. 360 acres
C. 280 acres
D. 160 acres
E. 240 acres
20. $92+93+94+\ldots+102+103=$ \qquad
A. 1,170
B. 1,168
C. 1,618
D. 1,162
E. 1,070
21. For $\overline{A B}, \mathrm{~A}$ is located at -14 and B is located at 23 . What is the location of the midpoint of $\overline{A B}$?
A. 4.5
B. 18.5
C. 9
D. 11
E. 55
22. Seven copies of a magazine cost less than $\$ 12$, but eight copies of the same magazine cost more than $\$ 13$. How much could one copy of the magazine cost?
A. $\$ 1.50$
B. $\$ 1.40$
C. $\$ 1.70$
D. $\$ 1.60$
E. $\$ 1.80$
23. If 4 shimmies are equivalent to 9 wammies and 6 wammies are equivalent to 11 zimmies, how many shimmies are equivalent to 132 zimmies?
A. 36
B. 20
C. 32
D. 48
E. 24
24. Mark has a rectangle that has a length of $4 a^{2} b^{5}$ units and an area of $24 a^{5} b^{12}$ units ${ }^{2}$. Joey wants to draw a rectangle that is twice as wide as Mark's rectangle. How wide will Joey's rectangle be?
A. $8 a^{6} b^{14}$
B. $8 a^{7} b^{17}$
C. $12 a^{7} b^{17}$
D. $12 a^{6} b^{14}$
E. $12 a^{3} b^{7}$
$25311_{5}=$ \qquad
A. 41
B. 21
C. 81
D. 79
E. 47
25. Find the area of the triangle below.

A. $144 \sqrt{3} i n^{2}$
B. $288 \sqrt{3} \mathrm{in}^{2}$
C. $72 \sqrt{3}$ in 2
D. $196 \sqrt{3} \mathrm{in}^{2}$
E. $256 \sqrt{3} \mathrm{in}^{2}$
26. What is the sum of the next two terms of the sequence? $14,18,22, \ldots$
A. 56
B. 48
C. 40
D. 46
E. 30
27. How much money will be in a bank account if $\$ 3,000$ is deposited at a rate of 7% compounded yearly after 2 years?
A. $\$ 3,437.40$
B. \$3,439.10
C. \$3,434.70
D. $\$ 3,153.70$
E. \$3,834.10
28. Sara worked 24 hours during the week and was paid $\$ 180.00$. Julian worked 30 hours during the week and was paid $\$ 234.00$. How many more cents per hour did Julian make than Sara?
A. 25ϕ
B. $24 \notin$
C. 32ϕ
D. $28 \varnothing$
E. $30 \not \subset$
29. What value is nineteen more than the median of the set of numbers $\{24,32,17,19,28\}$?
A. 43
B. 36
C. 44
D. 26
E. 34
30. What is the sum of the slopes of the lines $12 y+18 x=5$ and $-12 x+20 y=7$?
A. $-\frac{3}{5}$
B. $-\frac{1}{3}$
C. $-\frac{7}{8}$
D. $-\frac{11}{12}$
E. $-\frac{9}{10}$
31. What is the area of the isosceles trapezoid below?

A. $40 \mathrm{~cm}^{2}$
B. $60 \mathrm{~cm}^{2}$
C. $75 \mathrm{~cm}^{2}$
D. $50 \mathrm{~cm}^{2}$
E. $80 \mathrm{~cm}^{2}$
32. The solution set $(-\infty,-11)$ is the solution for which of the following inequalities?
A. $x-8 \geq-7$
B. $x-3 \geq-11$
C. $3 x+5<2 x-6$
D. $3 x+7>2 x+11$
E. $2 x+3>x+8$
33. A jar contains 9 red marbles, 7 blue marbles and 4 yellow marbles. If two marbles are selected at random, without replacement, what is the probability that the two marbles selected are the same color?
A. $\frac{1}{2}$
B. $\frac{4}{5}$
C. $\frac{63}{190}$
D. $\frac{12}{95}$
E. $\frac{2}{19}$
34. The number 13 is a prime number. If you reverse its digits, you get 31 , which is also prime. How many two-digit prime numbers can be found that will also be prime if you reverse their digits?
A. 8
B. 9
C. 10
D. 7
E. 11
35. Subs Your Way © © spends x dollars on bread and y dollars on meats. Subs Your Way ©)'s profit per day is modeled by $f(x, y)=12,000-x-2 y$. What is the profit of one day if Subs Your Way \odot spends $\$ 200$ on bread and $\$ 640$ on meats?
A. $\$ 10,250$
B. $\$ 11,640$
C. $\$ 10,760$
D. $\$ 10,460$
E. $\$ 10,520$
36. In base 10 , what is the sum of the largest four-digit base 5 number and the smallest four-digit base 4 number?
A. 697
B 789
C. 798
D. 688
E. 669
37. A Pythagorean triple is said to be primitive if and only if a, b, and c share no common divisors. Which of the following Pythagorean triples is not a primitive Pythagorean triple?
A. $9,40,41$
B. $8,15,17$
C. 20, 21, 29
D. $12,35,37$
E. $15,36,39$
38. How many positive integers less than or equal to 20 can be written as the sum of two prime numbers?
A. 18
B. 12
C. 15
D. 16
E. 9
39. If $4^{x}+4^{x-1}=50$, then $4^{2 x}$ is equal to which of the following?
A. 1,600
B. 2,500
C. 256
D. 625
E. 156.25
40. Using the picture below, find the value of m^{4}.

A. 400
B. 1,024
C. 784
D. 50
E. 256
41. The graph of $x^{2}+y^{2}+16 x-24 y=-159$ is a circle. What is the length of the diameter of the circle?
A. 10 units
B. 14 units
C. 15 units
D. 24 units
E. 18 units
42. If $1+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}=\frac{a}{b}$, then $\sqrt{a+b}$ is equal to which of the following?
A. $2 \sqrt{3}$
B. $2 \sqrt{22}$
C. $3 \sqrt{2}$
D. $3 \sqrt{6}$
E. $9 \sqrt{2}$
43. For his class, Mr. Chu drew a quadrilateral on a large coordinate grid sheet of paper. The vertices of the quadrilateral were $(-5,2)$, $(-2,-2),(5,-4)$ and $(8,4)$. Mr. Chu called on a student to throw a plastic dart at the quadrilateral. The dart landed inside the quadrilateral, tearing a hole one-fourth the area of the quadrilateral. What was the area of the hole?
A. 12 units 2
B. 16 units 2
C. 10 units 2
D. 13 units 2
E. 15 units 2
44. Find the area of the shaded region below, if $\overline{A B}$ is tangent to the unshaded circle and measures 12 cm .

A. $144 \pi \mathrm{~cm}^{2}$
B. $72 \pi \mathrm{~cm}^{2}$
C. $36 \pi \mathrm{~cm}^{2}$
D. $24 \pi \mathrm{~cm}^{2}$
E. $16 \pi \mathrm{~cm}^{2}$
45. Which of the following is the equation of the line perpendicular to the given line that passes through the point $(3,1)$?

A. $x+2 y=0.5$
B. $x+2 y=1$
C. $x-2 y=-0.5$
D. $x-2 y=0.5$
E. $x-2 y=1$
46. The arithmetic mean of four positive integers is 6 . What is the greatest possible sum of the squares of the four integers?
A. 114
B. 441
C. 524
D. 444
E. 521
47. Alice and Brody have bedrooms of equal dimensions. Alice can paint her bedroom in 3 hours and Brody can paint his bedroom in 2 hours. If they painted together, how long would it take them to paint one bedroom?
A. 1 hr 16 min
B. 1 hr 8 min
C. 1 hr 12 min
D. 1 hr 10 min
E. 1 hr 20 min
48. Find the value of $\frac{x+7 y}{x-y}$ if $\frac{3 x+y}{x-2 y}=4$.
A. 11
B. -7
C. 6
D. $1 / 4$
E. 2
49. What is the sum of all the positive integers that satisfy $\frac{1}{3} x+\frac{1}{2}<\frac{1}{4} x+2$?
A. 171
B. 190
C. 153
D. 136
E. 161

1. D	$18 . \mathrm{D}$	$35 . \mathrm{B}$
2. A	$19 . \mathrm{E}$	$36 . \mathrm{E}$
3. C	$20 . \mathrm{A}$	$37 . \mathrm{D}$
4. A	$21 . \mathrm{A}$	$38 . \mathrm{E}$
5. D	$22 . \mathrm{C}$	$39 . \mathrm{C}$
6. B	$23 . \mathrm{C}$	$40 . \mathrm{A}$
7. B	$24 . \mathrm{E}$	$41 . \mathrm{A}$
8. E	$25 . \mathrm{C}$	$42 . \mathrm{B}$
9. A	$26 . \mathrm{A}$	$43 . \mathrm{C}$
10. A	$27 . \mathrm{A}$	$44 . \mathrm{E}$
11. A	$28 . \mathrm{C}$	$45 . \mathrm{C}$
12. C	$29 . \mathrm{E}$	$46 . \mathrm{E}$
13. D	$30 . \mathrm{A}$	$47 . \mathrm{D}$
14. E	$31 . \mathrm{E}$	$48 . \mathrm{C}$
15. E	$32 . \mathrm{D}$	$49 . \mathrm{E}$
16.	$33 . \mathrm{C}$	50.
17.	$34 . \mathrm{C}$	

35. There are 9 prime numbers that also create a prime number once their digits are reversed. The nine prime numbers are $11,13,17,31,37,71,73,79$ and 97.
36. We want to find $f(x, y)=12,000-x-2 y$, with x dollars on bread and y dollars on meats. We are given $\$ 200$ on bread and $\$ 640$ on meats, so $f(200,640)=12,000-200-2(640)=\$ 10,520$ profit.
37. All the sets of three numbers are primitive Pythagorean triples, except the set $\{15,36,39\}$ because all three terms share a common factor of 3 .
38. There are 15. $4=2+2,5=2+3,6=3+3,7=2+5,8=3+5,9=2+7,10=5+5,12=5+7$, $13=2+11,14=7+7,15=2+13,16=3+13,18=5+13,19=2+17$ and $20=3+17$.
39. First draw a radius of the inside non-shaded circle that is perpendicular to $\overline{A B}$. Next draw a radius from where $\overline{A B}$ lies on the large circle to the center, as below.

Now we see that $R^{2}=r^{2}+x^{2} . x$ is equal to 6 cm because it is a chord with a radius drawn through it, which bisects it. Using the multiplication of equality, we can multiply all terms by π and this means the area of the large circle is $\pi R^{2}=\pi r^{2}+\pi x^{2}$. Remember, we are looking for $\pi R^{2}-\pi r^{2}$, so we need to subtract πr^{2} from both sides. Therefore, $\pi R^{2}-\pi x^{2}=\pi x^{2}=\pi 6^{2}=36 \pi \mathrm{~cm}^{2}$.
49. If $\frac{3 x+y}{x-2 y}=4$, then $\frac{3 x+y}{x-2 y}=\frac{4}{1}$, giving us $3 x+y=4$ and $x-2 y=1$. Solve the system by first eliminating y by multiplying the first equation by 2. $2(3 x+y=4)=6 x+2 y=8$. Add both equations and get $6 x+2 y$ $+x-2 y=8+1$, so $7 x=9$ and $x=\frac{9}{7}$. Substituting $\frac{9}{7}$ in for x, and
$\frac{9}{7}-2 y=1$ and $y=\frac{1}{7}$. Substituting our values into $\frac{x+7 y}{x-y}$, and we get $\frac{\frac{9}{7}+7 \cdot \frac{1}{7}}{\frac{9}{7}-\frac{1}{7}}=\frac{\frac{16}{7}}{\frac{8}{7}}=\frac{16}{7} \cdot \frac{7}{8}=2$.

