

TMSCA MIDDLE SCHOOL MATHEMATICS
TEST \#2 ©
OCTOBER 31, 2015

GENERAL DIRECTIONS

1. About this test:
A. You will be given 40 minutes to take this test.
B. There are 50 problems on this test.
2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use BLOCK CAPITAL LETTERS. Clean erasures are necessary for accurate grading.
3. If using a scantron answer form be sure to correctly denote the number of problems not attempted.
4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
5. You may use additional scratch paper provided by the contest director.
6. All problems have ONE and ONLY ONE correct [BEST] answer. There is a penalty for allincorrect answers.
7. Calculators MAY NOT be used on this test.
8. All problems answered correctly are worth FIVE points. TWO points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1. Brandon has a one-hundred dollar bill. He plans to buy a shirt that costs $\$ 32.68$, a snack that costs $\$ 8.73$ and a drink that costs $\$ 2.38$. If there is no tax on any item, how much change will Brandon have after purchasing the items?
A. \$67.31
B. $\$ 58.51$
C. \$64.91
D. $\$ 56.91$
E. \$56.21
2. Leonard wants to find the sum of 54,600 and 8,986 . What will Leonard's answer be if he were to round to the nearest hundred after totaling the given numbers?
A. 65,300
B. 63,600
C. 63,500
D. 63,590
E. 63,580
3. $8 \frac{1}{3} \div 2 \frac{1}{2}=$ \qquad
A. $4 \frac{1}{6}$
B. $4 \frac{5}{6}$
C. $3 \frac{1}{4}$
D. $3 \frac{1}{3}$
E. $3 \frac{1}{2}$
4. $12.6 \times 2.7=$ \qquad
A. 24.42
B. 24.13
C. 34.02
D. 34.42
E. 28.42
5. Let n be the digit in the hundred's place in the number 298,645. Find the value of $1 / 2 n+3 n$.
A. 3
B. 6
C. 21
D. 24
E. 28
6. Michelle is buying a shirt costing $\$ 12.45$ with a sales tax of 6%. To the nearest cent, how much tax will Michelle have to pay?
A. $\$ 0.75$
B. $\$ 0.74$
\$0.73
D. $\$ 0.76$
E. \$0.72
7. 726,000,000 milligrams = \qquad decagrams.
A. $72,600,000$
B. $7,260,000$
C. 726,000
D. 72,600
E. 7,260
8. $-8+19-7-(-3)+(-6)-1=$ \qquad
A. -14
B. 0
C. 1
D. -2
E. 22
9. Find the value of x in the picture below.

A. 126
B. 306
C. 154
D. 87
E. 146
10. Which of the following is an example of an integer?
A. -9.9
B. $\sqrt{25}$
C. 2.1^{2}
D. 4.1
E. $1 / 4$
11. What is the prime factorization of the number 248 ?
A. $2^{4} \cdot 3^{3} \cdot 7$
B. $2^{3} \cdot 31$
C. $2^{2} \cdot 62$
D. $2^{3} \cdot 3 \cdot 29$
E. $2^{4} \cdot 3 \cdot 7 \cdot 13$
12. How many diagonals can be drawn from one vertex of a regular polygon with seven sides?
A. 14
B. 7
C. 9
D. 4
E. 3
13. Which property below can be illustrated by, " $3+(8+4)=8+(3+4)$ ".
A. associative
B. commutative
C. transitive
D. distributive
E. reflexive
14. $11 / 2 \%=$ \qquad (fraction)
A. $\frac{3}{200}$
B. $\frac{3}{2}$
C. $\frac{3}{20}$
D. 0.015
E. 1.5
15. The supplement of an angle measuring 23.71° is equal to \qquad $-$
A. 136.59
B. 156.59
C. 156.29
D. 146.29
E. 146.59
16. $\$ 56.24=64$ quarters + \qquad dimes +200 nickels +24 pennies.
A. 3,000
B. 350
C. 200
D. 540
E. 300
17. If $A=\left(x^{3}+3 x^{2}+17 x-200\right)+\left(4 x^{5}-3 x^{4}-x^{2}+4 x-1\right)$, then what is the degree of A ?
A. 8
B. 5
C. 12
D. 13
E. 18
18. $900-839=$ \qquad (Roman numeral)
A. $D X I$
B. $C V I$
C. $X C X I$
D. $X L I$
E. LXI
19. The set $\{m, a, t, h\}$ has how many subsets?
A. 4
B. 8
C. 16
D. 8
E. 24
20. Ralphio pays a one time $\$ 40$ membership fee to join Sky's the Limit Golf Club and a $\$ 9.00$ green fee for each time he golfs. What is the total cost for Ralphio to golf 15 times?
A. $\$ 150.00$
B. $\$ 185.00$
C. $\$ 225.00$
D. $\$ 175.00$
E. $\$ 135.00$
21. What is the lateral surface area of a cylinder that has a diameter of 10 cm and a height of 24 cm (let $\pi=3$)?
A. $720 \mathrm{~cm}^{2}$
B. $870 \mathrm{~cm}^{2}$
C. $1,440 \mathrm{~cm}^{2}$
D. $810 \mathrm{~cm}^{2}$
E. $2,040 \mathrm{~cm}^{2}$
22. What is the twentieth term of the sequence? $-13,-9,-5,-1, \ldots$
A. 63
B. 76
C. 67
D. 71
E. 75
23. A regular heptagon has \qquad total degrees.
A. 900
B. 1,080
C. 1,160
D. 720
E. 540
24. What is the probability of drawing a prime number card from a standard deck of cards (in ratio form)?
A. 1:13
B. 3:13
C. $4: 13$
D. 7:52
E. 5:26
25. If $f(x)=14-3 x$, find the value of $f\left(\frac{16}{12}\right)$.
A. 10
B. 11.75
C. -8
D. -34
E. 18
26. What is the parent function of all linear functions?
A. $f(x)=x$
B. $f(x)=A x+B y$
C. $y-y_{1}=m\left(x-x_{1}\right)$
D. $f(x)=m x+b$
E. $f(x)=x^{2}$
27. $\frac{1}{6^{7}}$ is equivalent to which of the following?
A. -6^{7}
B. 6^{7}
C. $6^{\frac{1}{7}}$
D. -6^{-7}
E. 6^{-7}
28. The legs of a right triangle measure 10 cm and 24 cm . What is the length of the hypotenuse?
A. 26 cm
B. 28 cm
C. 34 cm
D. 32 cm
E. 14 cm
29. Change the number $76,000,000,000$ into scientific notation.
A. 76×10^{9}
B. 76×10^{10}
C. 7.6×10^{9}
D. 7.6×10^{10}
E. 0.76×10^{11}
30. If the probability of it raining today is $3: 7$, what are the odds of it not raining today?
A. $4: 3$
B. $4: 7$
C. 3:4
D. 7:3
E. 7:4
31. What type of function is modeled by the table below?

x	-2	-1	0	1	2
y	-5	-3	-1	1	3

A. linear
B. quadratic
C. exponential
D. cubic
E. radical
32. Which line below is parallel to the line with the equation $y=1 / 2 x-7$?
A. $y=2 x+9$
B. $y=x$
C. $y=-1 / 2 x+2$
D. $y=1 / 2 x+1$
E. $y=-2 x-2$
33. Which quadratic function below is in vertex form?
A. $y=(x-3)^{2}$
B. $y=x^{2}+2 x-1$
C. $y=x^{2}$
D. $y=(x-1)(x+2)$
E. $y=7$
34. $\sqrt{8}+\sqrt{32}=$ \qquad
A. $6 \sqrt{2}$
B. $2 \sqrt{10}$
C. $18 \sqrt{2}$
D. $\sqrt{40}$
E. $6 \sqrt{10}$
35. What is the simple interest accumulated after depositing $\$ 1,000$ for 4 years at 5\%?
A. $\$ 100$
B. $\$ 240$
C. \$250
D. $\$ 150$
E. $\$ 200$
36. $67_{10}=$ \qquad -6
A. 151
B. 215
C. 115
D. 155
E. 131
37. Use the examples below to find the value of w.

A. 852
B. 87
C. 755
D. 79
E. 1,156
38. $30^{\circ}=$ \qquad (radians)
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. 30π
D. 3π
E. $\frac{\pi}{30}$
39. The area of an equilateral triangle with a side length of 6 inches is equal to \qquad inches ${ }^{2}$.
A. $9 \sqrt{3}$
B. $6 \sqrt{3}$
C. $12 \sqrt{3}$
D. $15 \sqrt{3}$
E. $3 \sqrt{3}$
40. A line has a slope of 5 and passes through the point $(3,7)$. What is the equation of this line in point-slope form?
A. $y-7=3(x-5)$
B. $y+7=5(x+3)$
C. $y-7=5(x-3)$
D. $y-5=3(x-7)$
E. $y-5=7(x-3)$
41. What is the volume of a rectangular prism that measure 8 cm high, 11 cm long and 14 cm wide?
A. $708 \mathrm{~cm}^{3}$
B. $1,232 \mathrm{~cm}^{3}$
C. $1,320 \mathrm{~cm}^{3}$
D. $1,416 \mathrm{~cm}^{3}$
E. $1,432 \mathrm{~cm}^{2}$
42. If $A=\left[\begin{array}{cc}-3 & 6 \\ 7 & -10\end{array}\right]$ and $B=\left[\begin{array}{ll}-4 & 7 \\ -4 & 5\end{array}\right]$, find $A+B$.
A. $\left[\begin{array}{cc}12 & 42 \\ -28 & -50\end{array}\right]$
B. $\left[\begin{array}{cc}-7 & 13 \\ 3 & 5\end{array}\right]$
C. $\left[\begin{array}{cc}7 & 3 \\ 4 & -9\end{array}\right]$
D. $\left[\begin{array}{cc}7 & 13 \\ -3 & 5\end{array}\right]$
E. $\left[\begin{array}{cc}-7 & 13 \\ 3 & -5\end{array}\right]$
43. The solution to the system of linear equations below is equal to (a, b). Find the value of $3 a+11 b$.

$$
\left\{\begin{array}{l}
x-6 y=-16 \\
\frac{1}{2} x+3 y=4
\end{array}\right.
$$

A. 10
B. -24
C. 2
D. -2
E. -8
44. $\log _{7} 343=3$ can be rewritten as which of the following?
A. $3^{7}=343$
B. $343^{3}=7$
C. $\log _{3} 343=7$
D. $\log _{343} 7=3$
E. $7^{3}=343$
45. Using the picture below, what is the measure of $\overline{A C}$?

A. 17 units
B. 21 units
C. 22.5 units
D. 26.5 units
E. 30.5 units
46. If $(x-8)(x+7)=x^{2}+B x-56$, what is the value of $3 B-11$?
A. -12
B. -56
C. -3
D. -14
E. -8
47. What is the square root of the sum of one-fourth of five hundred added to one hundred?
A. 15
B. 141
C. 18
D. $5 \sqrt{6}$
E. $5 \sqrt{5}$
48. The sum of three consecutive integers is -138 . What is the value of one-half the middle integer?
A. -24
B. -23.5
C. -23
D. -22.5
E. -22
49. Which point below is not a solution to the system of linear inequalities? $\quad\left\{\begin{array}{l}3 x-y>5 \\ y<2 x-1\end{array}\right.$
A. $(0,-12)$
B. $(1,-1)$
C. $(3,1)$
D. $(15,-3)$
E. $(-1,-100)$
50. Simplify: $\quad\left(\frac{x^{3}\left(x^{-4}\right)^{2}}{x^{5} \cdot x^{-13}}\right)^{2}$
A. $\frac{1}{x^{5}}$
B. $\frac{1}{x^{6}}$
C. x^{5}
D. x^{6}
E. x^{3}

1. E	$18 . \mathrm{E}$	$35 . \mathrm{E}$
2. B	$19 . \mathrm{C}$	$36 . \mathrm{A}$
3. D	$20 . \mathrm{D}$	$37 . \mathrm{B}$
4. C	$21 . \mathrm{A}$	$38 . \mathrm{B}$
5. C	$22 . \mathrm{A}$	$39 . \mathrm{A}$
6. A	$23 . \mathrm{A}$	$40 . \mathrm{C}$
7.	$24 . \mathrm{C}$	$41 . \mathrm{B}$
8. B	$25 . \mathrm{A}$	$42 . \mathrm{E}$
9. A	$26 . \mathrm{A}$	$43 . \mathrm{A}$
10. B	$27 . \mathrm{E}$	$44 . \mathrm{E}$
11. B	$28 . \mathrm{A}$	$45 . \mathrm{D}$
12. D	$29 . \mathrm{D}$	$46 . \mathrm{D}$
13. A	$30 . \mathrm{A}$	$47 . \mathrm{A}$
14. A	$31 . \mathrm{A}$	$48 . \mathrm{C}$
15.	$32 . \mathrm{D}$	$49 . \mathrm{B}$
16.	$33 . \mathrm{A}$	$50 . \mathrm{D}$
17.	$34 . \mathrm{A}$	

3. $8 \frac{1}{3} \div 2 \frac{1}{2}=\frac{25}{3} \div \frac{5}{2}=\frac{25}{3} \cdot \frac{2}{5}=\frac{50}{15}=\frac{10}{3}=3 \frac{1}{3}$.
4. The total number of subsets of a set is equal to 2^{n}, where n is equal to the number of elements in the set. We are given the set $\{m, a, t, h\}$, which has four elements. Therefore, the set $\{m, a, t, h\}$ has $2^{4}=16$ subsets.
5. Using the examples below we are asked to find the value of w.

| -7 | 9 |
| :--- | :--- | :--- |
| 40 | |
| | 10 -14
 114 \quad23 -5
 534-11 34 |

Set up another box as

From this we can manipulate the numbers to find a pattern The pattern that works is $\mathrm{A}^{2}+\mathrm{B}=\mathrm{C}$. So, letting $\mathrm{A}=-11$ and $\mathrm{B}=34$, we have $(-11)^{2}+34=155=w$.
38. $30^{\circ}=30 \cdot \frac{\pi}{180}=\frac{30 \pi}{180}=\frac{\pi}{6}$ radians.
48. Is three consecutive integers total -138 , we can create an equation. Let x be our first integer, then $x+1$ is our second and $x+2$ is our third. We create the equation $x+x+1+x+2=-138$, or $3 x+3=-138$. We subtract 3 from both sides and $3 x=-141$. Dividing by 3 gives us $x=-47$. Our three integers are now, $-47,-46$ and $-45.1 / 2$ the middle term is $1 / 2$ of $-46=-23$.

