

TMSCA MIDDLE SCHOOL MATHEMATICS TEST #9 © JANUARY 28, 2017

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 50 problems on this test.

2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading on Scantrons and Chatsworth cards.

- 3. If you are using a Chatsworth or Scantron card, please follow the specific instructions given at your particular meet.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.

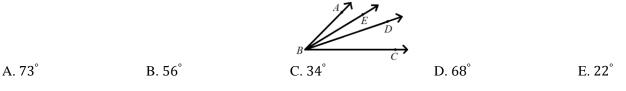
7. Calculators **MAY NOT** be used on this test.

8. All problems answered correctly are worth **FIVE** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.

9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

2016 - 2017 TMSCA Middle School Mathematics Test #9


1. Which expressions below all have the same value?				
	I. 422 + 360	II. 34 · 23 III. 78	2	
A. I, II and III	B. I, II, III and IV	C. II and III	D. III only	E. I, II and IV
2. What would Rachel ge A. 31	et if she rounded 123.76 to t B. 30	the nearest tenth and then d C. 30.95	livided that value by 4? D. 30.94	E. 31.24
3. Find the value if six is A. −43.84	s subtracted from the produc B53.84	ct of 5.6 and -8.9. C. −61.84	D46.84	E55.84
4. Becky, Roman and Linda went to a resale shop, where no one pays tax. Becky found an old cabinet for \$21.78, Roman found a printer for \$18.64 and Linda found a sign for \$7.24. They all combined their findings for one bill. Linda only had \$4.22 to contribute and Becky and Roman will split the remaining portion. How much will Becky have to pay?A. \$23.82B. \$19.46C. \$20.78D. \$21.72E. \$22.14				
5. Using the picture belo	w, find the measure of x .			
		60 cm 54 cm	ı	
		$\frac{58^{\circ}}{x}$ 64°		
A. 60 cm	B. 64 cm	C. 58 cm	D. 54 cm	E. 52 cm
6. You have seven coins each coin, how many nic		es, nickels and pennies that	have a total value of \$0.77	7. If you have at least one of
A. 1	B. 2	C. 3	D. 4	E. 5
7. If $m \bowtie n = (2m - n)$	$)^2 + mn$, then find the value	e of $\left(-1 \bowtie \left(-\frac{1}{2} \bowtie 2\right)\right)$.		
A. 9	B. 25	C. 121	D. 144	E. 64
	er of diagonals that can be d ptagon. Find the value of <i>E</i>		regular nonagon and let B	equal the number of total
A. 8	B. 7	C. 10	D. 6	E. 14
9. One package of bacon contains sixteen slices. For a banquet, Chelsea bought a dozen packages of bacon, but only cooked ³ / ₄ of each package. How many slices of bacon did Chelsea not cook?				
A. 36	B. 48	C. 54	D. 144	E. 90
10. If <i>a</i> = 1, <i>b</i> = 2, <i>c</i> = 3, A. 133	,, z = 26, what is the sum B. 131	of the letters of the word <i>q</i> C. 126	quotient? D. 121	E. 117
11. The president of Latin Club holds his position three years. What is the maximum number of presidents the Latin Club could have had during a twenty-year period?				
A. 5	B. 9	C. 6	D. 7	E. 8
12. If you roll a pair of d	lice, what is the probability	that the product of the face	s landing up is a multiple o	of 4?
A. $\frac{1}{3}$	B. $\frac{7}{12}$	C. $\frac{13}{36}$	$D.\frac{1}{2}$	E. $\frac{23}{36}$
13. If <i>A</i> = {3, 6, 9, 12, 15 A. 137	5, 18} and $B = \{2, 4, 6, 8, 10, B, 63\}$	0, 12, 14, 16, 18, 20}, then C. 110	what is the sum of the elen D. 102	the entropy of $A \cap B$? E. 36
14. What is the product of A. 1,269	of the next two terms in the B. 1,363	sequence? 0, 3, 4, 7, 11, 18 C. 1,486	3, D. 846	E. 76
Convright © 2016 by TMSCA				

15. Jose is buying a new A. \$24.64	w shirt that costs \$24.00. 1 B. \$25.84	n total, how much will Jo C. \$26.04	ose pay if there is an 8.5% D. \$26.24	sales tax? E. \$25.94
16. A total of 1,472 oun A. 64	ces of dog food must be p B. 31	backed in 4-pound bags. 1 C. 19	How many 4-pound bags o D. 23	f dog food will be packed? E. 25
17. If <i>A</i> = 354 + 287 and A. DCCCXCVI	B = 1,014 - 759, then A B. DCCCLXXXVI	+ B = (Rom C. CCMXCVI	an numeral) D. MCCXCVI	E. DCCCVI
18. Four-fifths of 12,000 A. 9.6 × 10 ¹⁰	0,000,000 = B. 1.2×10^{10}	(scientific notation) C. 9.6×10^9	D. 2.4 × 10 ⁹	E. 4.8×10^9
19. Assuming $\pi = 3$, cal A. 20,400 cm ²	culate the lateral surface a B. 40,800 cm ²	area of a cylinder with a d C. $4,080 \text{ cm}^2$	liameter of 34 cm and a he D. 22,134 cm^2	ight of 2 m. E. 11,067 cm^2
	Il standing next to her on er doll casts if her doll is e B. 3.6 inches		five feet tall and casts a 3 D. 4.6 inches	feet long shadow, how E. 4.8 inches
21. Quadrilateral ABCD		t A(-2, 4), B(2, 6), C(4, -2) and <i>D</i> (-6, -2) and is dilate	
A. (-21, 7)	B. (7, 21)	C. (14, -7)	D. (-21, -7)	E. (-7, 14)
is the percent of increase	e for the area Alan calcula	ated to the actual area of t	-	
A. 2.5%	B. 0.5%	C. 5%	D. 10.5%	E. 12.5%
	c equation in standard for B. $y = x^2 - 9x - 112$		nd 7? D. $y = x^2 + 9x + 112$	E. $y = x^2 - 16x + 7$
		selected to represent their	school on the Good Morn	ing News. How many
groups of four students A. 495	B. 11,880	C. 180	D. 8	E. 375
25. On a New York City subway route, station C is located at the midpoint between stations A and B . Station D is located at the midpoint between stations A and C . If the distance between stations A and B is 9.6 miles, what is the distance between stations D and B ?				
A. 9.4 miles	B. 12.2 miles	C. 7.2 miles	D. 9.6 miles	E. 6.8 miles
26. Albert gets a paycheck every two weeks. His paycheck is calculated by getting paid \$280 per week plus 5% commission on all his electronic sales for that week. If Albert sold \$3,000 worth of electronic sales in week one and \$2,400 worth of electronic sales in week two, how much will be on Albert's paycheck before taxes are taken out?				
A. \$1,780	B. \$1,378	C. \$550	D. \$830	E. \$1,100
27. 170 ₈ ÷ 1000 ₂ = A. 15	B. 21 ⁴	C. 33	D. 120	E. 111
28. Given the function $f(x)$, which of the following functions, $g(x)$ is a translation of $f(x)$ eleven units left and six units up? A. $g(x) = f(x - 11) + 6$ B. $g(x) = f(x) + 17$ C. $g(x) = 11f(x) + 6$ D. $g(x) = f(11x) + 6$ E. $g(x) = f(x + 11) + 6$				

A. 2

B. 3

30. Using the picture below, \overrightarrow{BD} bisects $\angle ABC$ and \overrightarrow{BE} bisects $\angle ABD$. What is the measure of the complement of $\angle ABC$, if $m \angle EBD = 17^{\circ}$?

31. Marcy scored an 84, 78 and 92 on her first three tests. Laura scored a 90, 86 and 80 on her first three tests. If Laura scoresa 96 on her fourth test, what must Marcy score on her fourth test to have the same test average as Laura?A. 96B. 97C. 98D. 99E. 100

32. If
$$f(x) = \frac{x-4}{x+12}$$
 and $g(x) = x^2 - 7x - 3$, then find the value of $f(-16) - g(6)$.
A. 5 B. -9 C. -4 D. -70 E. 14

33. The shaded sector of the circle below has a central angle of 45° and a radius of 16 cm. What is the area of the non-shaded region of the circle?

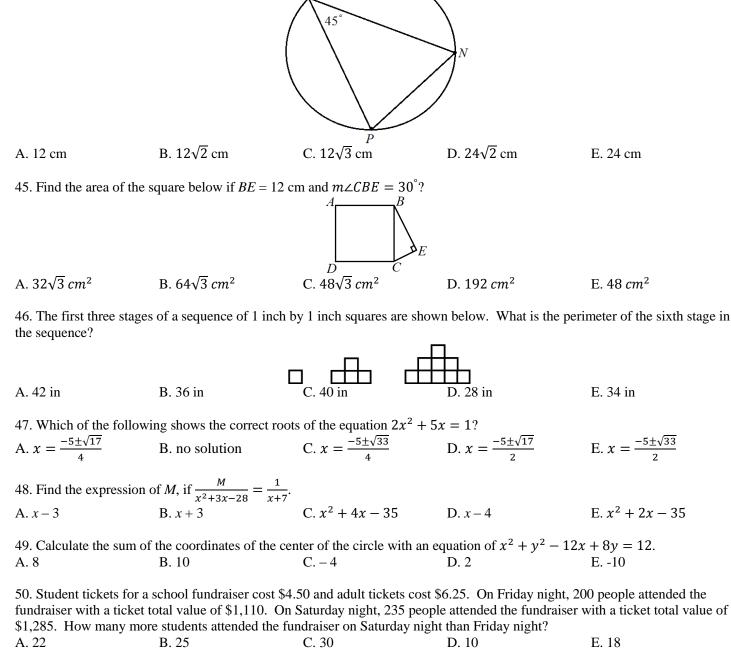
B. 224π cm ²	C. 28π cm ²	D. $126\pi \text{ cm}^2$	E. 296π cm ²	
ch convention. What is	the probability that the p	-		
36. If $\frac{5}{7}x + 0.\overline{3} = 0.4 - \frac{2}{7}x + \frac{2}{5}$, then find the value of the reciprocal of x.				
B. $\frac{3}{7}$	C. $\frac{15}{2}$	D. $\frac{21}{5}$	E. $\frac{15}{7}$	
37. In the grid below, there are 16 evenly spaced dots., one unit apart. Using only dots as vertices, how many squares can be drawn with a side length of $\sqrt{2}$ units?				
	by by provide the solution of the second se	by by the set of the solution to the inequality? 4 B. $\left[-\infty, -\frac{5}{12}\right]$ C. $\left[\frac{5}{12}, \infty\right]$ We senior tech workers and four junior tech work ch convention. What is the probability that the p B. $\frac{5}{18}$ C. $\frac{5}{9}$ A. $-\frac{2}{7}x + \frac{2}{5}$, then find the value of the reciprod B. $\frac{3}{7}$ C. $\frac{15}{2}$ there are 16 evenly spaced dots., one unit apart.	The provided HTML provided HT	

38. \bigcirc *P* has a diameter of 10 units. A chord is drawn in the circle that is perpendicular to the diameter and divides the diameter into segments of 4 units and 6 units. In simplest radical form, what is the length of the chord?

D. 5

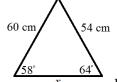
E. 6

A. $16\sqrt{2}$ units B. $16\sqrt{6}$ units C. $4\sqrt{2}$ units D. $6\sqrt{2}$ units E. $4\sqrt{6}$ units 39. If $\frac{1}{m} + \frac{1}{3m} + \frac{1}{5m} = n$, then what is the value of mn? A. $\frac{23}{15}$ B. $\frac{5}{3}$ C. $\frac{14}{9}$ D. $\frac{16}{9}$ E. $\frac{9}{5}$ 40. Simplify: $(a^3b^4)^2(2a^4b^7)^3$ A. $6a^{12}b^{16}$ B. $6a^{18}b^{29}$ C. $8a^{12}b^{16}$ D. $8a^{13}b^{18}$ E. $8a^{18}b^{29}$


C. 4

41. The angle measures of a quadrilateral are in a ratio of 9:11:25:27. What is the measure of the largest of these angles?A. 125°B. 215°C. 155°D. 115°E. 135°

42. You are given that a + 4b + 2c = 12, 2a + 2b + c = 7 and 4a + b + 4c = 16. What is the value of a + b + c? A. 8 B. 6 C. 7 D. 5 E. 9


43. If $x^2 + \frac{1}{r^2}$	= 8, then what is the value of	$x^{4} + \frac{1}{r^{4}}?$		
A. 254	B. 4,096	°C. 30	D. 62	E. 128

44. In the picture below, *M*, *N* and *P* are points on the circumference of the circle of diameter 24 cm and $m \angle PMN = 45^{\circ}$. Find the length of chord *PN*.

1. E	18. C	35. B
2. C	19. A	36. E
3. E	20. E	37. C
4. D	21. D	38. E
5. D	22. E	39. A
6. A	23. A	40. E
7. C	24. A	41. E
8. A	25. C	42. D
9. B	26. D	43. D
10. D	27. C	44. B
11. E	28. E	45. D
12. C	29. B	46. E
13. E	30. E	47. C
14. A	31. C	48. D
15. C	32. E	49. D
16. D	33. B	50. B
17. A	34. C	

5. In the picture,

 $\frac{258^{\circ}}{x}$ we can find the missing angle to be $180 - 58 - 64 = 58^{\circ}$. Since it is te same measure as the side across from the other 58° angle, it must also be 54 cm.

22. Alan's area of the picture is 12 in². The actual area is 3(4.5) = 13.5 in². To calculate the percent of increase, we use $\frac{change \text{ in amount}}{original \text{ amount}} \cdot 100$, so $\frac{13.5-12}{12} = 0.125$ and $0.125 \cdot 100 = 12.5\%$.

24. We want to know how many combinations of 4 are possible from 12. ${}_{12}C_4 = \frac{12!}{4!(8!)} = 495$.

26. For the two weeks, Alberts's paycheck will be 280 + 280 + (0.05)(3000) + (0.05)(2400) = \$830.

29. An arithmetic sequence adds a common difference between successive terms. It is given the 3^{rd} term is 10 and the 5th term is 28. Therefore, 28 - 10 = 18, which means our common difference is 9. The fourth term is then 19 and we subtract from 9 from 10 and get 1 and so on until we see our sequences starts at -8. We have, -8, 1, 10, 19, 28, ... to find the n^{th} term of an arithmetic sequence, use the formula $a_n = a_1 + (n - 1)d$, where *n* is the term position and *d* is the common difference. So, substituting into our equation gives us -8 + (30)(9) = 262.

39. If we have $\frac{1}{m} + \frac{1}{3m} + \frac{1}{5m} = n$, then our common denominator is 15m. $\frac{1}{m} = \frac{15}{15m}, \frac{1}{3m} = \frac{5}{15m}$, and finally $\frac{1}{5m} = \frac{3}{15m}, \frac{15}{15m} + \frac{5}{15m} + \frac{3}{15m} = \frac{23}{15m}$. Now we have $\frac{23}{15m} = n$. Multiply each side by *m* and our solution is now $mn = \frac{23}{15}$.

40. $(a^{3}b^{4})^{2}(2a^{4}b^{7})^{3} = a^{3\cdot 2}b^{4\cdot 2} \cdot 2^{3}a^{4\cdot 3}b^{7\cdot 3} = 8a^{6+12}b^{8+21} = 8a^{18}b^{29}$.

41. Let x be our constant and we know there are 360° in a quadrilateral. We can set up our equation as such, 9x + 11x + 25x + 27x = 360. Simplify to get 72x = 360. Divide by 72 to both sides and x = 5. The largest angle is then $27(5) = 135^{\circ}$.

42. We are given a + 4b + 2c = 12, 2a + 2b + c = 7 and 4a + b + 4c = 16. First, add all three equations together.

$$a + 4b + 2c = 12 + (2a + 2b + c = 7) + (4a + b + 4c = 16) 7a + 7b + 7c = 35$$

Now, divide every term and both sides by 7 and we get a + b + c = 5.