

TMSCA MIDDLE SCHOOL MATHEMATICS<br>REGIONALTEST©<br>MARCH 5, 2016

## GENERAL DIRECTIONS

1. About this test:
A. You will be given 40 minutes to take this test.
B. There are 50 problems on this test.
2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use BLOCK CAPITAL LETTERS. Clean erasures are necessary for accurate grading.
3. If using a scantron answer form be sure to correctly denote the number of problems not attempted.
4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
5. You may use additional scratch paper provided by the contest director.
6. All problems have ONE and ONLY ONE correct [BEST] answer. There is a penalty for allincorrect answers.
7. Calculators MAY NOT be used on this test.
8. All problems answered correctly are worth FIVE points. TWO points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1. Missy is buying a shirt that costs $\$ 54.86$, a pair of pants for $\$ 76.24$ and a pair of shoes for $\$ 87.29$. What is Missy's subtotal, before taxes?
A. $\$ 216.49$
B. $\$ 218.39$
C. $\$ 221.89$
D. $\$ 207.29$
E. $\$ 217.19$
2. $72.04-283 / 4=$ $\qquad$ (nearest tenth)
A. 44.4
B. 43.3
C. 43.2
D. 40
E. 43
3. $(68-128) \div(-5)=$
A. 12
B. -39.2
C. -141.6
D. -60
E. 20
4. Calculate the product of 47 and the additive inverse of 23 .
A. 1,504
B. 1,161
C. $-1,161$
D. $-1,081$
E. $-1,021$
5. What is $12 \frac{1}{2} \%$ of 480 ?
A. 80
B. 60
C. 40
D. 65
E. 75
6. 7.6 kilometers $+6,000$ centimeters $+2,000$ decimeters $=$ $\qquad$ meters
A. 786
B. 78.6
C. 78,600
D. 7,860
E. 786,000
7. How many vertices does a regular pentagonal prism have?
A. 5
B. 12
C. 10
D. 15
E. 7
8. What is the area of the non-shaded region in the picture below?

A. $266 \mathrm{~cm}^{2}$
B. $374 \mathrm{~cm}^{2}$
C. $290 \mathrm{~cm}^{2}$
D. $54 \mathrm{~cm}^{2}$
E. $114 \mathrm{~cm}^{2}$
9. Simplify: $\quad 5 n-(8 n-7)+6(2 n-1)$
A. $9 n-13$
B. $15 n-1$
C. $9 n+1$
D. $9 n-1$
E. $15 n+7$
10. If $a=5$ and the side length of an equilateral triangle is $7 a-1$, what is the triangle's perimeter?
A. 68 units
B. 98 units
C. 84 units
D. 105 units
E. 102 units
11. The sum of the supplement and complement of a $48^{\circ}$ angle is equal to ${ }^{\circ}$.
A. 174
B. 132
C. 196
D. 156
E. 154
12. What is the unit rate of spending $\$ 100.80$ for two-gross apples?
A. $\$ 0.24$
B. $\$ 0.28$
C. $\$ 0.25$
D. $\$ 0.35$
E. $\$ 0.55$
13. 1 cubic yard $=$ $\qquad$ cubic feet
A. 36
B. 1,296
C. 27
D. 54
E. 24
14. What number is two-fifths less than the multiplicative inverse of $3 \frac{1}{8}$ ?
A. $-\frac{2}{25}$
B. $\frac{17}{40}$
C. $-\frac{3}{40}$
D. $\frac{18}{25}$
E. $-\frac{18}{25}$
15. What is the probability of rolling a pair of dice and getting a sum divisible by 6 ?
A. $\frac{1}{3}$
B. $\frac{2}{5}$
C. $\frac{1}{8}$
D. $\frac{2}{9}$
E. $\frac{1}{6}$
16. Of the twenty-four non-overlapping regions created by the nine diagonals in a regular hexagon, how many are not triangles?
A. 18
B. 12
C. 8
D. 6
E. 4
17. Find the value of $2016^{2}-2015^{2}$.
A. 4,131
B. 4,656
C. 4,625
D. 4,031
E. 4,321
18. Let $A$ equal the set of numbers $\{12,14,9,17,18\}$ and $B$ equal the set of numbers $\{4,8,9,20,3\}$. Find the value of the positive difference of the medians of $A$ and $B$.
A. 0
B. 14
C. 8
D. 6
E. 4
19. Moving only to the left or down, how many paths are there from $W$ to $X$ ?

A. 8
B. 9
C. 10
D. 11
E. 12
20. Solve for $n: \frac{n+2}{5}=\frac{n-1}{4}$
A. 12
B. 13
C. 15
D. 18
E. 23
21. $45_{7}=$ $\qquad$ $-9+14_{10}$
A. 33
B. 18
C. 21
D. 19
E. 23
22. Use the examples below to find the value of $A$.

| 8 | -5 |
| :---: | :---: |
| 3 | 18 |
|  | 66 | | 10 | 3 |
| :---: | :---: |
| 20 | 4 |
| -11 | 39 |
| 14 | $A$ |

A. 72
B. 69
C. 57
D. 73
E. 61
23. If you add all the lengths of the edges of a cube, the sum is 48 inches. What is the volume of this cube?
A. $64 \mathrm{in}^{3}$
B. $512 \mathrm{in}^{3}$
C. 216 in $^{3}$
D. $54 \mathrm{in}^{3}$
E. 96 in $^{3}$
24. A fourth of a half of $m$ equals a third of $w$. If $m=48$, what is the value of $w$ ?
A. 18
B. 6
C. 12
D. 24
E. 3
25. What is the units digit of $4^{11}$ ?
A. 8
B. 4
C. 2
D. 1
E. 0
26. Calculate the sum of the range and mean of the set of numbers $14,26,17,28,20,12,16$.
A. 47
B. 56
C. 35
D. 41
E. 38
27. What is the positive difference in the total number of diagonals of a pentagon and the total number of diagonals of an octagon?
A. 18
B. 14
C. 17
D. 16
E. 15
28. A box measuring $12 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7 \mathrm{~cm}$ is filled half-way with packing peanuts. What is the volume of the amount of packing peanuts inside the box?
A. $420 \mathrm{~cm}^{3}$
B. $640 \mathrm{~cm}^{3}$
C. $840 \mathrm{~cm}^{3}$
D. $210 \mathrm{~cm}^{3}$
E. $274 \mathrm{~cm}^{3}$
29. If $x$ varies directly as $y$, and $x=4$ when $y=48$, find the value of $x$ when $y=120$.
A. 40
B. 24
C. 10
D. 20
E. 36
30. What is the sum of all the positive integral divisors of the number 120 ?
A. 360
B. 240
C. 239
D. 480
E. 280
31. Which linear equation below has a slope of $2 / 3$ and passes through the point $(12,-9)$ ?
A. $2 x+3 y=-9$
B. $2 x-3 y=51$
C. $2 x-3 y=-9$
D. $3 x-2 y=51$
E. $3 x+2 y=-51$
32. What is the distance of the line segment with endpoints located at $(-7,3)$ and $(5,-2)$ ?
A. 13 units
B. 15 units
C. 9 units
D. 12 units
E. 10 units
33. Choose the linear inequality that matches the graph below.

A. $y>2 x+1$
B. $y \geq-2 x+1$
C. $y \geq \frac{1}{2} x+\frac{1}{2}$
D. $y \leq-\frac{1}{2} x+1$
E. $y \leq-x+1$
34. Find the midpoint between the points $A$ and $B$, if $A$ has coordinates ( $3 n, 5 n$ ) and $B$ has coordinates $(n,-2 n)$ and $n=7$.
A. $(21,35)$
B. $(7,-14)$
C. $(14,10.5)$
D. $(21,10.5)$
E. $(14,-14)$
35. Convert $\frac{41 \pi}{36}$ radians into a degree measure.
A. $205^{\circ}$
B. $210^{\circ}$
C. $235^{\circ}$
D. $224^{\circ}$
E. $216^{\circ}$
36. A town population is decreasing at a rate of $70 \%$ each year. If the population is 30,000 , what will be the population after two years?
A. 86,700
B. 8,670
C. 2,700
D. 14,700
E. 6,030
37. Find the value of $\log _{4} 64+\log _{3} 27-\log _{3} 9$.
A. 0
B. 2
C. 4
D. 6
E. 8
38. $48\left[\begin{array}{cc}2 / 3 & -3 / 4 \\ 1 / 4 & 3 / 8\end{array}\right]=$
A. $\left[\begin{array}{cc}16 & -18 \\ 6 & 9\end{array}\right]$
B. $\left[\begin{array}{ll}32 & 36 \\ 12 & 18\end{array}\right]$
C. $\left[\begin{array}{ll}64 & 72 \\ 24 & 36\end{array}\right]$
D. $\left[\begin{array}{cc}72 & -36 \\ 12 & 18\end{array}\right]$
E. $\left[\begin{array}{cc}32 & -36 \\ 12 & 18\end{array}\right]$
39. Which of the following linear equations are perpendicular?
I. $4 x-y=10$
II. $y=-1 / 4 x-3$
III. $y=-4 x+11$
IV. $y=1 / 2 x-7$
A. I and II
B. II and III
C. I and III
D. II and IV
E. II and IV
40. Find the value of $5^{x}$, if $5^{x+3}=250$.
A. 125
B. 2
C. 47
D. 3
E. 5
41. The sum of four consecutive positive odd integers is 208. What is the value of seven more than the largest of these integers?
A. 56
B. 58
C. 59
D. 60
E. 62
42. What is the length of the diagonal of a rectangle with side lengths of 4 cm and 6 cm ?
A. $4 \sqrt{13} \mathrm{~cm}$
B. $2 \sqrt{6} \mathrm{~cm}$
C. $6 \sqrt{2} \mathrm{~cm}$
D. $13 \sqrt{6} \mathrm{~cm}$
E. $2 \sqrt{13} \mathrm{~cm}$
43. Billy can fold one basket of clothes in twelve minutes and Laura can fold the same basket of clothes in eighteen minutes. If they work together, hold long would it take them to fold two baskets of clothes?
A. 12.6 minutes
B. 7.2 minutes
C. 9.4 minutes
D. 14.4 minutes
E. 10.8 minutes
44. If $f(x)=3 x-7$ and $g(x)=4 x+3$, find $f(g(a+1)$.
A. $12 a+14$
C. $12 a+21$
C. $12 a-7$
D. $7 a-3$
E. $7 a+21$
45. In the picture below, $m \angle A=36^{\circ}, \overrightarrow{A E}$ is tangent at $E$, and secant $\overline{A P D}$ passes through the center of $\odot P$. The measure of $\angle E C D=$ $\qquad$ ${ }^{\circ}$.

A. 63
B. 54
C. 116
D. 46
E. 58
46. Which expression is equivalent to $\frac{5 x}{\sqrt{5}}$ ?
A. $5 x \sqrt{5}$
B. $x \sqrt{5}$
C. $\frac{5}{x}$
D. $\frac{x}{5}$
E. $\frac{x \sqrt{5}}{5}$
47. Find the area of a triangle with its vertices located at $(-7,-1),(5,-2)$ and $(2,6)$.
A. 38 units $^{2}$
B. 38.5 units $^{2}$
C. 40 units $^{2}$
D. 46 units $^{2}$
E. 46.5 units $^{2}$
48. Express the inequality below using interval notation.

A. $[-15,-\infty]$
B. $(-15,-\infty)$
C. $(-15, \infty)$
D. $(-15, \infty]$
E. $[-15, \infty]$
49. What is the sum of the coordinates of the solution to the system $\left\{\begin{array}{l}4 x+\frac{1}{2} y=-12 \\ 3 x+\frac{1}{4} y=-24\end{array}\right.$ ?
A. 138
B. 102
C. 120
D. 92
E. 112
50. If $x+\frac{1}{x}=4$, what is the value of $x^{2}+\frac{1}{x^{2}}$ ?
A. 14
B. 16
C. 18
D. 12
E. 20

| 1. B | $18 . \mathrm{D}$ | $35 . \mathrm{A}$ |
| :--- | :--- | :--- |
| 2. B | $19 . \mathrm{B}$ | $36 . \mathrm{C}$ |
| 3. A | $20 . \mathrm{B}$ | $37 . \mathrm{C}$ |
| 4. D | $21 . \mathrm{C}$ | $38 . \mathrm{E}$ |
| 5. B | $22 . \mathrm{B}$ | $39 . \mathrm{A}$ |
| 6. D | $23 . \mathrm{A}$ | $40 . \mathrm{B}$ |
| 7. C | $24 . \mathrm{A}$ | $41 . \mathrm{E}$ |
| 8. A | $25 . \mathrm{B}$ | $42 . \mathrm{E}$ |
| 9. C | $26 . \mathrm{C}$ | $43 . \mathrm{D}$ |
| 10. E | $27 . \mathrm{E}$ | $44 . \mathrm{A}$ |
| 11. A | $28 . \mathrm{A}$ | $45 . \mathrm{A}$ |
| 12. D | $29 . \mathrm{C}$ | $46 . \mathrm{B}$ |
| 13. C | $30 . \mathrm{A}$ | $47 . \mathrm{E}$ |
| 14. A | $31 . \mathrm{B}$ | $48 . \mathrm{C}$ |
| 15. | $32 . \mathrm{A}$ | $49 . \mathrm{B}$ |
| 16. | $33 . \mathrm{B}$ | $50 . \mathrm{A}$ |
| 17. | $34 . \mathrm{C}$ |  |

12. We have to remember that one gross $=144$ items. So, we must divide $\$ 100.80$ by $2 \cdot 144$, or 288. $100.8 \div 288=0.35$, and we now know that our units rate is $\$ 0.35$ per apple.
13. A cube has 12 edges, so $48 \div 12=4$ inches per edge. The formula for volume of a cube is $s^{3}$. So, $4^{3}=64$ and our volume of the cube is $64 \mathrm{in}^{3}$.
14. The formula to calculate the distance between two points is $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$. We are given the points $(-7,3)$ and $(5,-2)$. Substituting our coordinates into our formula and we get $d=\sqrt{(-7-5)^{2}+(3-(-2))^{2}}=\sqrt{(-12)^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13$. The distance between our given points is equal to 13 units.
15. We must create an exponential function in the form $f(x)=a \cdot b^{x}$, and since our information says our population is decreasing, it will be an exponential decay function and $0<b<1$. To find $b$, subtract $70 \%=0.7$ from 1. $b=1-0.7=0.3$. Our function is now $f(x)=30,000(0.3)^{x}$, where $x$ is our amount of years, which gives us $f(2)=30,000(0.3)^{2}=30,000(0.09)=2,700$. After two years, our population will be 2,700.
16. We are asked to find $\log _{4} 64+\log _{3} 27-\log _{3} 9$. We know that $\log _{4} 64=3, \log _{3} 27=3$ and that $\log _{3} 9=2$. So, $\log _{4} 64+\log _{3} 27-\log _{3} 9=3+3-2=4$.
17. $48\left[\begin{array}{cc}2 / 3 & -3 / 4 \\ 1 / 4 & 3 / 8\end{array}\right]=\left[\begin{array}{cc}48 \cdot 2 / 3 & 48 \cdot-3 / 4 \\ 48 \cdot 1 / 4 & 48 \cdot 3 / 8\end{array}\right]=\left[\begin{array}{cc}32 & -36 \\ 12 & 18\end{array}\right]$.
