

TMSCA MIDDLE SCHOOL NUMBER SENSE
 TEST \# 8 ©
 JANUARY19, 2019

GENERAL DIRECTIONS

1. Write only the requested information on this coversheet. Do not make any additional marks on this cover sheet.
2. You will be given 10 minutes to take this test.
3. There are 80 problems on the test.
4. Write in ink only! It would be advantageous to use non-black ink.
5. Solve as many problems as you can in the order that they appear.
6. Problems that are skipped are considered wrong.
7. Problems that appear after the last attempted problem do not count either for or against you.
8. ALL PROBLEMS ARE TO BE SOLVED MENTALLY! [No scratch work!]
9. Only the answer may be written in the answer blank.
10. Starred [*] problems require approximate INTEGRAL answers that are within 5% of the exact answers. All other problems require exact answers.
11. All problems answered correctly are worth FIVE points. FOUR points will be deducted for all problems answered incorrectly or skipped before the last problem attempted.

TMSCA TMSCA
(1) $19+23+27+31+35=$
(2) $\mathbf{9 7} \times \mathbf{8}=$
(3) $905472 \div \mathbf{1 8}=$ \qquad
(4) $\frac{9}{20}=$ \qquad (decimal)
(5) $87 \times 25=$
(6) $\mathbf{1 3} \times 85=$
(7) $925 \div 6$ has a remainder of
(8) $23 \times 23=$ \qquad
(9) $14 \div 2+5 \times 7=$
*(10) $972-1347+2019=$
(11) $11 \times 238=$ \qquad
(12) $81 \times 89=$ \qquad
(13) $86 \times 95=$
(14) $1+2+3+\ldots+18=$
(15) $10812=102 \times$ \qquad
(16) The median of the first 11 prime numbers is \qquad
(17) $115 \times 15=$ \qquad
(18) $56 \times 12 \frac{1}{2}=$ \qquad
(19) $37 \times 6 \times 14=$ \qquad
*(20) $249 \times 2019=$ \qquad
(21) 8 yards $+\mathbf{1}$ foot +7 inches $=$ \qquad inches
(22) $68 \times 48=$ \qquad
(23) The sum of the LCM and GCD of 6 and 8 is
(24) The sum of the smallest 24 positive even integers is \qquad
(25) $17 \times 13 \frac{7}{17}=$ \qquad
(26) What is the smallest positive 3-digit number that has a remainder of 3 when divided by 5,7 , and 11 ? \qquad
(27) $0.242424 \ldots=$ \qquad (fraction)
(28) The perimeter of a decagon with side 2.37 is \qquad
(29) The next 3 terms in the sequence $\mathbf{2 , 3}, 5,7,11,13, \ldots$ have a sum of
*(30) $2019 \times 2019=$ \qquad
(31) $64 \times 76=$ \qquad
(32) If the mean of 14,31 and x is 30 , then $x=$ \qquad
(33) $3240=18^{2}+x^{2}$, if $x>0$, then $x=$ \qquad
(34) If $\mathrm{N}=2^{4} \times 3^{3} \times 5^{2} \times 7$, then \mathbf{N} has \qquad positive integral divisors.
(35) $8.5^{2}=$ \qquad (decimal)
(36) If the area of a triangle is 54 and the base is $\mathbf{3}$ more than the height, then height is \qquad
(37) If $3 x+7=64$, then $9 x=$ \qquad
(38) $285 \times 101=$ \qquad
(39) $33 \frac{1}{3} \times 2019=$ \qquad
*(40) $\sqrt{563124}=$ \qquad
(41) $\sqrt{7569}=$ \qquad
(42) The sum of the positive integral divisors of 26 is \qquad
(43) $72^{3}=18^{3} \times$
(44) A set with 8 elements has \qquad proper subsets
(45) The area of a square with diagonal $5 \sqrt{10}$ is \qquad
(46) $3279=$ \qquad
(47) The central angle of a regular dodecagon has a measure of \qquad \circ
(48) The number of integer
solutions of $9<2 x<27$ is \qquad
(49) $\mathbf{7 5}_{10}=$ \qquad
*(50) $93214 \div 235=$ \qquad
(51) $53^{2}-42^{2}=$ \qquad
(52) $16 \times \frac{15}{19}=$ \qquad (mixed number)
(53) How many terms are in the sequence 1, 7, 13, 19, 25, ..., 121? \qquad
(54) $\frac{11}{16}+\frac{16}{11}=$ \qquad (mixed number)
(55) The two solutions of $|\mathrm{x}-\mathrm{c}|=\mathrm{d}$ are -5 and 33 . The value of $c+d$ is \qquad
(56) If $f(x)=13 x+15$, then $f(87)-f(12)=$ \qquad
(57) The slope of the line with y-intercept 4 which passes through $(5,-2)$ is \qquad
(58) $739=$ \qquad -3
(59) $437_{9} \times 11_{9}=$ \qquad
*(60) $639 \times 142857=$ \qquad
(61) $0.93333 \ldots=$ \qquad (fraction)
(62) $107 \times 94=$ \qquad
(63) $f(x)=x^{3}+5 x^{2}-4 x+3 \cdot f(-5)=$ \qquad
(64) The difference in the $13^{\text {th }}$ triangular number and the $9^{\text {th }}$ triangular number is \qquad
(65) If a line perpendicular to $3 x+2 y=7$ is
$A x-3 y=C$, which passes through $(4,5) . C=$ \qquad
(66) How many triangles can be drawn using any 3 vertices of a nonagon? \qquad
(67) $237_{8}-55_{8}=$ \qquad 8
(68) $36+12+4+\ldots=$ \qquad
(69) What is the x^{3} coefficient of $\left(3 x^{2}-2 x+4\right)\left(2 x^{2}+5 x-7\right) ?$ \qquad
*(70) Find the length of the inner diagonal of a cube with side length 800 .
(71) The number of positive integers that are less than $\mathbf{4 0}$ that are relatively prime to $\mathbf{4 0}$ is \qquad
(72) If $f(x)=2 x^{2}+x+8$, then $f(x-3)$ has an axis of symmetry of $x=$ \qquad
(73) How many distinct 5-letter arrangements can be made from $\{\mathbf{p}, \mathbf{r}, \mathbf{o}, \mathbf{o f}\}$? \qquad
(74) $4 x^{2}-5 x-9=0$ has a discriminant of \qquad
(75) The side of a rhombus with diagonals 16 and 30 is \qquad
(76) The probability of rolling a sum of 9 or 10 when rolling two 6 -sided die is \qquad
(77) If $\log _{8} x=\frac{7}{3}$, then $x=$ \qquad
(78) $\frac{(x+5)!}{(x+2)!}$ will have a constant term of \qquad
(79) $f(x)=x^{3}-4 x^{2}+c x+d$ has
factors $(x-3),(x-5)$ and $(x-k) . k=$ \qquad
*(80) 900 miles $=$ \qquad yards
(1) $\mathbf{1 3 5}$
(2) 776
(24) 600
(25) 228
(3) $\mathbf{5 0 3 0 4}$
(4) .45
(26) 388
(27) $\frac{8}{33}$
(28) 23.7
(7) 1
(8) 529
(9) 42
*(10) 1562-1726
(11) 2618
(12) 7209
(13) 8170
(14) 171
(15) 106
(16) 13
(17) 1725
(18) 700
(19) 3108
*(20) 477595-527867
(21) 307
(22) 3264
(23) 26
(47) 30
(44) 255
(45) 125
(46) 268
(48) 9
(49) 135
*(50) 377-416
(51) 1045
(52) $12 \frac{12}{19}$
(53) 21
(54) $2 \frac{25}{176}$
(55) 33
(56) 975
(57) $-\frac{6}{5},-1 \frac{1}{5}$ or -1.2
(58) 2110
(59) 4817
*(60) 86721342-95849904
(61) $\frac{14}{15}$
(62) 10058
(63) 23
(64) 46
(65) -7
(66) 84
(67) 162
(68) 54
(69) 11
*(70) 1317-1454
(71) 16
(72) $\frac{11}{4}, 2 \frac{3}{4}$ or 2.75
(73) 60
(74) 169
(75) 17
(76) $\frac{7}{36}$
(77) 128
(78) 60
(79) -4
*(80) 1504800 - 1663200

Copyright ©2018 by TMSCA

