

TMSCA MIDDLE SCHOOL SCIENCE
REGIONALTEST ©
MARCH 3, 2018

GENERAL DIRECTIONS

1. About this test:
A. You will be given 40 minutes to take this test.
B. There are 50 problems on this test.
2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use BLOCK CAPITAL LETTERS. Clean erasures are necessary for accurate grading.
3. If using a Scantron answer form, be sure to correctly denote the number of problems not attempted.
4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
5. You may use additional scratch paper provided by the contest director.
6. All problems have ONE and ONLY ONE correct [BEST] answer. There is a penalty for all incorrect answers.
7. On the back of this page is a copy of the periodic table of the elements as well as a list of some potentially useful information in answering the questions.
8. A simple scientific calculator with the following formulas is sufficient for the science contest:,,$+- \%$, ${ }^{\wedge}, \log \mathrm{x}, \mathrm{e}^{\mathrm{x}}, \ln \mathrm{x}, \mathrm{y}^{\mathrm{x}}, \sin \mathrm{x}, \sin ^{-\mathrm{x}}, \cos \mathrm{x}, \cos ^{-\mathrm{x}}, \tan \mathrm{x}, \tan ^{-\mathrm{x}}$, with scientific notation and degree/radian capability.

The calculator must be silent, hand-held and battery operated. The calculator cannot be a computer or cannot have built-in or stored functionality that provides scientific information and cannot have communication capability. If the calculator has memory, it must be cleared. Each student may bring one spare calculator. NO GRAPHING CALCULATORS ARE PERMITTED.
9. All answers within $\pm 5 \%$ will be considered correct.
10. All problems answered correctly are worth FIVE points. TWO points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
11. In case of ties, percent accuracy will be used as a tie breaker.

Periodic Table of the Elements

$\begin{gathered} 1 A \\ 1 \end{gathered}$																	$\begin{aligned} & 8 A \\ & 18 \end{aligned}$
${ }_{1}^{1} \underset{1.008}{H}$	$\begin{gathered} 2 A \\ 2 \\ \hline \end{gathered}$											$\begin{aligned} & 3 A \\ & 13 \end{aligned}$	$\begin{aligned} & 4 A \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 A \\ & 15 \end{aligned}$	$\begin{aligned} & 6 A \\ & 16 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 17 \\ & \hline \end{aligned}$	He 4.003
${ }_{6.941}^{\mathrm{Li}_{6}}$	$4_{9.012}^{4}$											${ }^{5} \underset{10.81}{\text { B }}$	${ }^{6} \underset{12.01}{\mathbf{C}}$	${ }^{7} \underset{14.01}{\mathrm{~N}}$	${ }^{8} \underset{16.00}{\mathbf{O}}$	${ }^{9} \mathbf{F}$	$\begin{gathered} \hline 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\stackrel{11}{\stackrel{11}{\mathrm{Na}}}$	$\stackrel{12}{\mathrm{Mg}}$	$\begin{aligned} & 38 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} 4 B \\ 4 \end{gathered}$	$\begin{gathered} \text { 5B } \\ 5 \end{gathered}$	$\begin{gathered} 68 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ 7 \end{gathered}$	$\begin{gathered} 88 \\ 8 \end{gathered}$	$\begin{gathered} 88 \\ 9 \end{gathered}$	$\begin{aligned} & 88 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ \mathbf{A l} \\ 26.98 \\ \hline \end{array}$	${ }_{28}^{14} \mathbf{S i}$	$\begin{array}{\|c\|} \hline 15 \\ \mathbf{P} \\ \hline 0.97 \end{array}$	$\begin{array}{\|c\|} \hline 16 \\ \underset{32}{\mathbf{S}} .07 \\ \hline \end{array}$	${ }^{17}{ }_{35,45}^{\mathbf{C l}}$	$\begin{array}{\|c\|} \hline 18 \\ \mathbf{A r} \\ \hline 9.95 \end{array}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	${ }^{20} \mathbf{C a}$	$\underset{44.96}{21}$	$\begin{array}{\|c\|c\|} \hline 22 \\ \mathbf{T i} \\ \hline 7.87 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 23 \\ \mathbf{V}, 0.94 \\ \hline \end{array}$	${ }_{52}^{24} \mathbf{C r}$	$\begin{array}{\|l\|} \hline 25 \\ \mathrm{Mn} \\ 54.94 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 26 \\ \mathrm{Fe} \\ 55.85 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 27 \\ \text { Co } \\ 58 \end{array}$	$\begin{array}{\|c\|c\|} \hline 28 \\ \mathbf{N i} \mathbf{N i} \\ \hline \end{array}$	$\begin{array}{\|c\|c} \mid 29 \\ \mathbf{C u} \\ \text { 6.55 } \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ \mathbf{Z n} \\ 65.41 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 \\ \mathbf{G a} \end{array}$ 69.72	$\underset{72.64}{\mathbf{G 2}}$	${ }_{74.92}^{33}$	$\begin{array}{\|c\|} \hline 34 \\ \mathbf{S e} \\ 78.96 \end{array}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \\ & 79.90 \end{aligned}$	$\begin{array}{\|c\|} \hline 36 \\ \mathbf{K r} \\ 83.80 \end{array}$
$\begin{gathered} 37 \\ \mathbf{R} \\ \mathbf{R 5} .47 \\ \hline \end{gathered}$	${ }^{38} \mathrm{Sr}$	$\begin{array}{\|c\|} \hline 39 \\ 88.91 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 40 \\ \mathbf{Z r} \\ 91.22 \end{array}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \\ & 92.91 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & \mathbf{M o} \\ & 95.94 \end{aligned}$	${ }^{43} \text { Tc }$	$\underset{101.07}{\mathbf{R u}_{4}}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \\ & \text { R } \\ & \hline 10291 \end{aligned}$	$\begin{array}{\|c} \hline 46 \\ \text { Pd } \\ \text { 106.42 } \end{array}$	${\underset{107}{47}}_{\mathbf{A g}}$	${ }_{112}^{48} \mathbf{C}$	$\begin{array}{\|l\|} \hline 49 \\ \text { In }_{14.82} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50 \\ \text { Sn } \\ 118.71 \end{array}$	$\underset{121.76}{51}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { 127.60 } \end{gathered}$	$\stackrel{53}{126.90}^{\mathbf{I}^{2}}$	$\underset{131.29}{\mathbf{~ Y ~}}$
	$\begin{gathered} 56 \\ \mathbf{B a} \\ \mathbf{B a} .33 \end{gathered}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ \hline 13.91 \end{array}$	$\begin{array}{\|l\|} \hline 72 \\ \mathbf{H f} \\ \mathbf{H f} .49 \\ \hline \end{array}$	$\begin{array}{\|c} 73 \\ \text { Ta } \\ 180.95 \end{array}$	$\begin{array}{\|c} 74 \\ \text { W } \\ 183.84 \end{array}$	$\begin{array}{\|l\|} \hline 75 \\ \mathbf{R e} \\ \mathbf{R e} \\ \hline 186.21 \end{array}$	$\begin{array}{\|c} 76 \\ \text { Os } \\ \text { O. } 23 \end{array}$	${\underset{192}{77}}_{\mathbf{I r}}$	$\begin{array}{\|c\|} \hline 78 \\ \mathbf{P t} \\ \hline 195.08 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 79 \\ \mathbf{A u} \\ \hline 196.97 \\ \hline \end{array}$	${ }_{\substack{80 \\ \mathrm{Hg} \\ 200.59}}$	$\begin{array}{\|c\|} \hline 81 \\ \text { TI } \\ 204.38 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 82 \\ \mathbf{~ P b} \\ 207.20 \end{array}$	$\begin{array}{\|c\|} \hline 83 \\ \mathbf{B i} \\ \text { Bi } \\ \hline 08.98 \end{array}$	$\left\lvert\, \begin{gathered} 84 \\ \text { Po } \\ (209) \end{gathered}\right.$	$\underset{(210)}{85}$	$\begin{array}{\|l\|l} \hline 86 \\ \mathbf{R n}_{(222)} \\ \hline \end{array}$
$\begin{array}{\|c} \hline 87 \\ \hline \mathbf{~ (2 2 3) ~} \end{array}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$	89	$\begin{array}{\|c} 104 \\ \mathbf{R f} \\ (261) \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ \text { Db } \\ \text { (262) } \end{array}$	${ }^{106}$	$\begin{array}{\|c\|} \hline 107 \\ \mathbf{B h} \\ (264) \end{array}$	$\begin{array}{\|c} 108 \\ \mathrm{Hs} \\ (277) \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathbf{M t} \\ (268) \end{array}$	$\begin{gathered} 110 \\ \text { Ds } \\ \text { (281) } \end{gathered}$	$\begin{gathered} 111 \\ \mathrm{Rg} \end{gathered}$	$\begin{array}{\|c} 112 \\ \text { Cn } \\ \text { (285) } \end{array}$						

$\begin{array}{\|c\|} \hline 58 \\ \mathbf{C e} \\ \text { 140.12 } \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathbf{P r} \\ 140.91 \end{array}$	$\begin{aligned} & \hline 60 \\ & \mathbf{N d} \\ & 144.24 \end{aligned}$	$\begin{aligned} & \hline \mathbf{P 1} \\ & \text { Pm } \\ & (145) \end{aligned}$	$\begin{aligned} & \hline 62 \\ & \text { Sm } \\ & \text { Sm } \end{aligned}$	$\begin{aligned} & \hline 63 \\ & \text { Eu } \\ & 151.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \\ & \hline 157.25 \end{aligned}$	$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ \text { 158.93 } \end{array}$	$\begin{aligned} & 66 \\ & \text { Dy } \\ & \text { De2.50 } \end{aligned}$	$\begin{array}{\|c} \hline 67 \\ \mathrm{Ho} \\ 164.93 \end{array}$	$\begin{gathered} 68 \\ \text { Er } \\ \hline 167.26 \end{gathered}$	$\stackrel{69}{\operatorname{Tm}_{16.93}}$	$\begin{aligned} & \hline 70 \\ & \mathbf{Y b} \\ & 173.04 \end{aligned}$	$\begin{array}{\|l\|} \hline 71 \\ \hline 174.97 \end{array}$
90	91	92	93	94	95	96	97	98	99	100	10	102	103
Th 232.04	Pa 231.04	$\underset{238.03}{\mathbf{U}}$	Np	Pu	Am (243)	Cm	Bk (247)	Cf (251)	Es	Fm	Md (258)	No (259)	Lr

OTHER USEFUL INFORMATION

Acceleration of gravity at Earth's surface, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Avogadro's Number, $\mathrm{N}=6.02 \times 10^{23}$ molecules/mole
Planck's constant, $h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Planck's reduced constant, $\boldsymbol{\hbar}=\boldsymbol{h} / 2 \pi=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Standard temperature and pressure (STP) is $0^{\circ} \mathrm{C}$ and I atmosphere
Gram molecular volume al STP = $\mathbf{2 2} .4$ liters
Velocity of light, $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
Absolute zero $=0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
Gas constant, $\mathrm{R}=1.986 \mathrm{col} / \mathrm{K} \bullet$ mole $=0.082$ liter $\bullet \mathrm{otm} / \mathrm{K} \bullet \mathrm{mole}$
One Faraday= 96,500 coulombs ($9.65 \times 10^{4} \mathrm{C}$)
Dulong and Pelil's constant $=6.0 \mathrm{amu} \cdot \mathrm{col} / \mathrm{gram} \bullet \mathrm{K}$
Electron rest mass, $\mathrm{m}_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Atomic mass unit, $\mathrm{m}_{u}=1.66 \times 10^{-21} \mathrm{~kg}$
Boltzmann constant, $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$
Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
1 Atmosphere $=1.02 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=760$ Torr $=760 \mathrm{mmHg}$
1 Electron Volt - 1.6×10^{-19} Joules
Charge of on electron"' -1.6×10^{-19} coulombs (C)
1 horsepower (hp) = $746 \mathrm{~W}=550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}$
Neutron Moss=1.008665 au
Proton Mass=1.007277 au
1 au= 931.5 MeV
1 calorie= 4.184 Joules (J)
Specific heal of water $=4.18 \mathrm{~J} / \mathrm{g} \bullet{ }^{\circ} \mathrm{C}$

1. During what phase of mitosis will the spindle fibers attach to the chromosomes?
A) prometaphase
B) interphase
C) anaphase
D) telophase
2. A somatic human cell has
A) 23 chromosomes.
B) 46 chromosomes.
C) 46 pairs of chromosomes.
D) 21 pairs of chromosomes.
3. Which of the following is correctly matched with its function?
A) lysosome: contains genetic material
C) rough ER: creates ATP
B) mitochondria: generates lipids
D) Golgi body: packages proteins
4. The inner portion of the cell membrane would appropriately be described as
A) polar.
B) nonpolar.
C) hydrophilic.
D) ionic.
5. A freshwater organism was placed into a saltwater environment. What would happen to the organism?
A) It would shrivel.
C) It would thrive in the environment.
B) It would swell.
D) It would be able to move water equal in and out of the cell.
6. An organism that has different alleles for the same trait would be referred to as
A) homozygous.
B) heterozygous.
C) hemizygous.
D) none of the above.
7. A homozygous dominant black guinea pig and homozygous recessive white guinea pig are crossed. What is the probabilty of their offspring's phenotype?
A) 75% black and 25% grey
B) 75% black and 25% white
C) 50% black and 50% white
D) 100% black
8. Which of the following is not a type of evolutionary evidence?
A) transition fossils
C) embryology
B) homologous structures
D) analogous structures
9. When clear cutting takes place on a farm, what would happen afterwards?
A) primary succession.
C) climax community.
B) secondary succession.
D) ecosystem.
10. A relationship where an organism benefits from one organism while the other organism also benefits is known as
A) parasitism.
B) commensalism.
C) amensalism.
D) mutualism.
11. Which of the following would you find in a virus?
A) genetic material
B) cell wall
C) phospholipid
D) nucleus bilayer
12. Which of the following would be an appropriate organization of plants from earliest to most recent development?
A) moss \rightarrow ferns \rightarrow algae \rightarrow dicots
C) ferns \rightarrow angiosperms \rightarrow moss \rightarrow dicots
B) dicots \rightarrow ferns \rightarrow moss \rightarrow algae
D) algae \rightarrow moss \rightarrow ferns \rightarrow angiosperms
13. Fully-grown adults are much larger in size than young children. What happens to the cells of the body during the growth of a child?
A) The cells of a growing child divide to make \quad C) The cells of a growing child divide to make more cells, and those cells are each half the size as the cells were before they divided.
The cells do not grow before they divide again.
B) The cells of the body of a growing child grow, but the number of cells stays the same. more cells, and those cells grow to become the same size as the cells were just before they divided.
D) The size and number of cells in the body of a growing child stay the same.
14. A group of students is making paper airplanes. They think that the kind of paper and the design of the airplane may affect how far each paper airplane flies. The students first test if the kind of paper affects how far the airplane flies. They make several airplanes out of different kinds of paper, using the same design. Why is it important that all the airplanes have the same design?
A) By using the same design, the students can
C) If they do not use the same design, the students cannot learn about the effect of the paper.
B) By using the same design, the students can learn about the effect of the design.
D) It is NOT important for the airplanes to have the same design because the students are not testing the effect of the design.
15. Which of the following does DNA provide information for?
A) Both the types of amino acids that make up a protein, and the sequence of those amino acids.
B) The types of amino acids that make up a protein molecule, but not the sequence of amino acids.
16. What do DNA and protein have to do with each other?
A) DNA is a type of protein
B) Proteins make up DNA
C) DNA carries the information to create proteins
D) None of the above
17. How many nucleotides are needed to code for two amino acids?
A) 2
B) 6
C) 9
D) 4
18. Which of the following contain hereditary information?
A) Chromosomes
B) Genes
C) Plasmids
D) All of the above
19. Which of the following statements about competition between animals is TRUE?
A) Animals compete for food when it is
C) Animals compete for food, water, and limited, but they do not compete for water shelter when they are limited. when it is limited.
D) Animals do not compete for any resources,
B) Animals compete for food and water when even when it is limited. they are limited, but they do not compete for shelter when it is limited.
20. A cook places an iron frying pan on the stove. What happens as the iron pan heats up?
A) The number of iron atoms increases, so the
C) The distance between the iron atoms increases, so the pan gets a tiny bit larger.
B) The number of iron atoms does not change, so the pan remains the same.
D) The distance between the iron atoms does not change, so the pan remains the same.
21. When water boils, bubbles rise to the surface of the water. What are the bubbles made of?
A) Air molecules
B) Heat
molecules
C) Water
molecules
D) Oxygen molecules
22. Which of the following is the smallest?
A) A germ
C) The width of a hair
B) An atom
D) A cell in your body
23. Which of the following is an example of a chemical reaction?
A) A piece of wax melting and forming a
C) Bubbles of gas forming when a seashell is liquid placed in vinegar
B) A piece of chalk making white marks on a chalkboard
D) A powder dissolving in hot water to make hot chocolate
24. A student holds a ball at the top of a ramp. He lets go of the ball and the ball speeds up as it rolls down the ramp. How do the gravitational potential energy and the motion energy (kinetic energy) of the ball change as the ball rolls down the ramp? Why?
A) The gravitational potential energy decreases and the motion energy increases. The gravitational potential energy is transformed into motion energy as the ball rolls down the ramp.
C) The motion energy and gravitational potential energy both decrease. Both forms of energy are used up as the ball moves and are not transformed into any other form of energy.
B) The gravitational potential energy decreases and the motion energy increases. As soon as the ball starts moving it no longer has gravitational potential energy; it
D) The gravitational potential energy and the motion energy both stay the same. One form of energy cannot be transformed into a different form of energy. has only motion energy.
25. A classic example of a longitudinal wave found in nature is a
A) light wave.
B) sound wave.
C) ocean wave.
D) Tsunami wave.
26. What tectonic plate is London, England part of?
A) Eurasian
B) North American
C) Scotia
D) None of the above
27. What color do the hottest stars appear to be?
A) bluish white
B) yellow
C) red
D) green
28. The map below shows the location of 4 cities, A, B, C, and D in the western United States where prevailing winds are from the southwest.

Which city on the map is located in a rainshadow?
A) A
B) B
C) C
D) D
29. What is a tornado-like event that forms over water?
A) mesocyclone
B) microburst
C) supercell
D) waterspout
30. What type of cloud would the following be?

A) cirrus
B) cumulonimbus
C) stratus
D) shelf
31. Which of the particles below are considered an ion?
A) Cl^{-}
B) Ar
C) F_{2}
D) Ag
32. Which term is defined as a measure of the average kinetic energy of the particles in a sample?
A) temperature
C) pressure
B) thermal energy
D) chemical energy
33. Which Kelvin temperature is equivalent to $56^{\circ} \mathrm{C}$?
A) -329 K
B) -217 K
C) 217 K
D) 329 K
34. Which quantity of heat is equal to 200 . joules?
А) 2.00 kJ
В) 20.0 kJ
C) $200 . \mathrm{kJ}$
D) 0.200 kJ
35. Which element is a member of the halogen family?
A) K
B) Ar
C) Cl
D) S
36. The elements known as alkaline earth metals are found in Group
A) 1
B) 2
C) 17
D) 18
37. The prefix inter- used in science to form words such as intermembrane means?
A) between
B) against
C) within
D) turgid
38. A unit by which velocity is measured would be?
А) m / s
B) meter
C) kilogram
D) Watt
39. How many hydrogen atoms are found in hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$?
A) 2
B) 4
C) 1
D) 0
40. What type of rock can turn into metamorphic rock?
A) sedimentary rock
C) only metamorphic rock
B) igneous rock
D) any type of rock
41. A 10 kilogram mass rests on a horizontal frictionless surface. A horizontal force of 5 Newtons is applied to the mass. After the force has been applied for 1 second, the velocity of the mass is:
A) 0 meters per second
B) 0.5 meters per second
C) 5 meters per second
D) 50 meters per second
42. Kinetic energy is energy of:
A) position
B) radiation
C) motion
D) formation
43. Which of the following does NOT travel in a vacuum?
A) radio waves
B) gamma rays
C) magnetic waves
D) sound waves
44. Isotopes of an element have different numbers of:
A) electrons
B) protons
C) neutrons
D) leptons
45. Meiosis creates how many daughter cells?
А) 2
В) 3
C) 4
D) 1
46. What process is not part of the carbon cycle?
A) Weathering
C) Combustion
B) Cellular respiration
D) Assimilation
47. The arrow in a food chain represents
A) The flow of matter
C) The transfer of energy
B) The flow of heat
D) The transfer of biomass
48. What kind of tides exist at tidal bulges?
A) High
B) Low
C) Neap
D) Spring
49. Which of the following reactions would be a synthesis equation?
A) $2 \mathrm{H} 2 \mathrm{O} \rightarrow 2 \mathrm{H} 2+\mathrm{O} 2$
B) $2 \mathrm{H} 2 \mathrm{O} 2 \rightarrow 2 \mathrm{H} 2 \mathrm{O}+\mathrm{O} 2$
C) $\mathrm{N} 2+3 \mathrm{H} 2 \rightarrow 2 \mathrm{NH} 3$
D) $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O} 2$
50. The prefix hemo- used in science to form words such as hemoglobin means?
A) blood
B) tissue
C) cell
D) iron

1. A	18. D	35. C
2. B	19. C	36. B
3. D	20. C	37. A
4. B	21. C	38. A
5. A	22. B	39. A
6. B	23. C	40. D
7. D	24. A	41. B
8. D	25. B	42. C
9. B	26. A	43. D
10. D	27. A	44. C
11. A	28. A	45. C
12. D	29. D	46. A
13. C	30. B	47. C
14. C	31. A	48. A
15. A	32. A	49. C
16. C	33. D	50. A
17. B	34. D	

